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Abstract 
 
 
 Scattering matrix elements are calculated for the nonadiabatic inelastic collision 

( ) ( ) ( ) ( )'
2 1 2 1
 2   2  Σ , , Σ , ', '

a a
j g gj

B P H j B P H jν ν+ ++ ↔ + .  This calculation utilizes the 

effective potential energy surfaces for this collision generated by Garvin [1] along with a 

correction to the asymptotic 2H  potential.  Wavepackets are propagated on these surfaces 

using a split-operator propagator.  This propagation yields correlation functions between 

reactant and product Møller states which are used to calculate the scattering matrix 

elements with the channel packet method [2].  These scattering matrix elements represent 

probability amplitudes for the collision to result in changes to the electronic fine structure 

and to the rotational and vibrational eigenstates of the 2H  molecule over a range of 

energies, and are presented and discussed.  They are also compared to previous work in 

which the hydrogen bond length was fixed at its equilibrium value.  A method for 

approximating probability for the reaction 2B H BH H+ → +  as a function of collisional 

energy is presented. 
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SCATTERING MATRIX ELEMENTS FOR THE NONADIABATIC COLLISION 

 
 

I. Introduction 
 

The  B+H2 System 
 
 The 2B H+  system became of particular interest when boron was proposed as an 

energetic additive to solid molecular hydrogen (SMH) for use as a novel rocket 

propellant.  Realization of this technology would require complete characterization of the 

chemical, physical, and transport properties of boron doped SMH [3].  These early 

studies prompted additional theoretical interest in the 2B H+  system.  Specifically 

challenging, and hence interesting, is the unpaired electron in the 2 p orbital of atomic 

boron.  This electron creates a 2P spectroscopic term consisting of three degenerate 

orbitals.  When in proximity of a hydrogen molecule this degeneracy is slightly lifted 

resulting in three orbitals whose energy levels are very similar.  As a result, the electronic 

eigenstates exhibit strong dependence of nuclear coordinates, causing the system to 

behave nonadiabatically [4].  Given the 2P  electronic character of the 2B H+  system [3] 

[5] [6] [7], it can also serve as an accessible means to understand other atomic systems 

that exhibit 2P  electronic behavior.  Of particular interest is the insight the 2B H+  

system lends to collisional de-excitation in the operation of diode-pumped alkali lasers 
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(DPALs).  The Air Force is currently very interested in the development of DPAL 

systems. 

 During operation of a DPAL this electron is pumped to the 2
3/2P  states are 

collisionally de-excited to the 2
1/2P states.  This process is shown for rubidium [8]  

 

 

  For practical operation, electron population excited to the 2
3/2P  level must 

transition to the 2
1/2P  level at a sufficient rate.  Specifically it must be much faster than the 

2 P  spontaneous emission rate of 7 13 10  sec−×:  [8].  Ground-state boron also has a 2 P  

spectroscopic term.  Since it shares the same valence electron configuration with alkalis 

in the first excited state it will behave similarly.  The fine-structure collisional de-

excitation from 2
3/2P to 2

1/2P is among the transitions examined when studying the 

collision of boron with molecular hydrogen and will provide insight into the behavior of 

alkali atoms in DPAL systems. 

2
3/25 P  

2
1/25 P  

2
1/25 S  

pump 780 nmλ =  
laser 795 nmλ =  

Figure 1.  DPAL Transition for Rubidium 
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Statement of Objectives 
 
 This work will investigate the nonadiabatic effects of the collision of a boron 

atom with molecular hydrogen, given by the equation 

 ( ) ( ) ( ) ( )'
2 1 2 1 '
 2   2  Σ , , Σ , , '

a a
j g gj

B P H j B P H jν ν+ ++ ↔ +  (1) 

Effective potential energy surfaces for this interaction are provided by Garvin [1], 

extending initial ab initio calculations performed by Dr. David Yarkony at Johns Hopkins 

University. 

 By propagating wavepackets on these surfaces, scattering matrix elements can be 

obtained using the channel packet method [2].  These represent energy-resolved 

probability amplitudes for scattering from an incoming state to an outgoing state, both of 

which are selected prior to the calculation.  As shown by eq. (1), the collision may 

involve changes to the hydrogen vibrational and/or rotational states and the fine-structure 

of the boron electronic state.   The objectives of this research are to: 1) characterize the 

2B H+  effective potential energy surfaces; 2) propagate wavepackets on these surfaces; 

and 3) compute 2B H+  scattering matrix elements and present analysis. 

 

 

  



4 
 

II. Theory 
 

Schrödinger’s Equations 

 Fundamental to much of quantum mechanics, and this research in particular, is 

determining the time-evolution of a system.  The governing equation is the time-

dependent Schrödinger equation 

 ˆi H
t

ψ ψ∂
=

∂
h  (2) 

where ψ is the wavefunction and Ĥ is the Hamiltonian. 

 The time-dependent Schrödinger equation is most easily solved when the 

wavefunction is chosen to be a superposition of eigenstates of the Hamiltonian 

 i i
i

aψ φ= ∑  (3) 

where the eigenstates φ  are solutions to the equation  

 Ĥ Eφ φ=  (4) 

Eq. (4) is known as the time-independent Schrödinger equation.  The eigenvalue E 

corresponding to each eigenstate is the energy of that eigenstate.  The set of all 

eigenstates of the Hamiltonian is complete, allowing any wavefunction to be constructed 

as a superposition of eigenstates of the Hamiltonian.  Solving the time-independent 

Schrödinger equation is often the first and most important step in understanding a 

quantum mechanical system. 
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The Hamiltonian 
 
 The Hamiltonian for a system is the sum of the kinetic and potential energy 

operators of the system,   

 ˆ ˆ ˆH T V= +  (5) 

where T̂ is the kinetic energy operator and V̂ is the potential energy operator.  If the 

system is made up of interacting nuclei and electrons, it may be represented as 

 ˆ ˆ ˆ ˆ ˆ ˆ
N e NN eN eeH T T V V V= + + + +  (6) 

In eq. (6) the subscripts identify the particle types – N for nuclei and e for electrons.  The 

kinetic energy operators are simply the sum of the kinetic energy operators of their 

respective particle type, while the potential operators are the sum of the Coulomb 

potentials for all the particles – among nuclei, between nuclei and electrons, and among 

electrons, respectively.  If the system contains Nn  nuclei and en electrons, the 

Hamiltonian is 

 
22 2 2 2

1 1 1 1 1 1

ˆ ˆˆ
ˆ ˆ2 2 ˆ ˆ ˆ ˆ

N e N N N e e en n n n n n n n
i

i i i j ie i i j

Z Z ep p Z e eH
m m q qq q q q

α βα α

α α β α αα αα β= = = > = = = >

= + + − +
−− −∑ ∑ ∑ ∑ ∑∑ ∑∑  (7) 

where p̂ is the momentum operator, m is the mass of the particle, Ze is the charge of the 

particle (given by its atomic number multiplied by the charge of the electron), and q̂ is 

the position operator of the particle.  The Greek letters α and β index nuclei, while i and 

j index electrons. 

 The total number of terms in the Hamiltonian increases rapidly as the number of 

interacting particles increases.  The 2B H+ system has 3 nuclei and 7 electrons, giving a 

total of 55 terms in the Hamiltonian.  The time-independent Schrödinger equation for the 
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Hamiltonian given in eq. (7) cannot be solved analytically, prompting the use of 

approximations and numerical methods. 

  

The Born-Oppenheimer Approximation 

 Since nuclei are much more massive than electrons, it is expected that they will 

move very slowly relative to the electrons’ motion.  The electrons move under the 

influence of nuclei which are approximately fixed in space.  In turn, nuclei move under 

the influence of an average electron ‘cloud’.  This suggests an approximation for solving 

the molecular time-independent Schrödinger equation by separating nuclear and 

electronic motion. 

 The nuclei are fixed in place by setting their kinetic energy operators to zero in 

the Hamiltonian.  The remaining terms are known as the electronic Hamiltonian. 

 
22 2 2

1 1 1 1 1

ˆ
ˆ2 ˆ ˆ

e N N N e e en n n n n n n
i

elec
i i i j ie i i j

Z Z ep Z e eH
m q qq q q q

α β α

α β α α αα β= = > = = = >

= + − +
−− −∑ ∑ ∑ ∑∑ ∑∑  (8) 

In eq. (8) the nuclear coordinates are parameters rather than operators, and the second 

term ( )
2

1

N Nn n

NN N

Z Z e
V q

q q
α β

α β α α β= >

=
−∑ ∑  is a constant for a given set of nuclear coordinates 

{ }1 2, ,...Nq q q= . 

 The electronic time-independent Schrödinger equation is 

 ( ) ( ) ( )ˆ j
elec N elec N NH j q E q j q=  (9) 

where both the electronic eigenstates j  and their associated energy eigenvalues j
elecE  

are explicitly shown to depend parametrically on the nuclear coordinates Nq .  This 
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equation may be solved using ab initio numerical techniques such as the Hartree-Fock 

approximation, configuration interaction or multi-configuration self-consistent field 

methods.  These techniques are described by Szabo and Ostlund [9], and are generally 

applied through the use of mature software packages developed specifically for large 

quantum chemistry applications to yield j
elecE over a range of nuclear coordinates.  The 

result is a potential energy surface (PES) ( )j
elec NE q , which has a dimensionality given by 

the number of nuclear degrees of freedom, as well as the associated electronic eigenstates 

( )Nj q . 

 The set of electronic eigenstates is complete and the eigenstates of the full system 

ψ  can therefore be represented in the basis of the electronic eigenstates. 

 ( ) ( ) ( )N j N N
j

q F q j qψ = ∑  (10) 

Substituting this into the full time-independent Schrödinger equation gives 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ
N elec j N N j N N

j j
T H F q j q E F q j q+ =∑ ∑  (11) 

This expression is simplified by noting that E is a constant and the electron eigenstates 

are orthonormal.  Multiplying from the left by ( )Ni q and integrating over electronic 

coordinates gives 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ
N N elec j N N i N

j
i q T H F q j q EF q+ =∑  (12) 

Additionally the electronic Hamiltonian does not operate on nuclear coordinates, 

allowing this to be simplified as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ
N N j N N N j N elec N i N

j j
i q T F q j q i q F q H j q EF q+ =∑ ∑  
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 ( ) ( ) ( ) ( ) ( )ˆ i
N N j N N elec i N i N

j
i q T F q j q E F q EF q+ =∑  (13) 

where ( ) ( )ˆ j
elec N elec NH j q E j q=  and ( ) ( )N N iji q j q δ= .  The nuclear kinetic energy 

operator N̂T does operate on nuclear coordinates.  Expressing eq. (13) in the coordinate 

representation with jj φ→  and 
2

2ˆ
2 NN qT

mα α

→ − ∇∑ h
 gives 

 ( ) ( ) ( ) ( ) ( )
2

* 21 , ,
2 N

i
i N e q j N j N e e elec i N i N

j
q q F q q q dq E F q EF q

mα α

φ φ− ∇ + =∑∑ ∫
h

 (14) 

The dependence of the various functions on nuclear coordinates Nq and electronic 

coordinates eq is shown explicitly.  The subscript 2
Nq∇  indicates which coordinates the 

derivatives are with respect to.  Applying the product rule eq. (14) becomes 

 

( ) ( ){
( ) ( ) } ( )

( ) ( )

2
2 *

,

* 2

1 2 , ,
2

, ,

N N N

N

ij q i N e q j N e e q
j

i N e q j N e e j N

i
elec i N

q q q q dq
m

q q q q dq F q

E E F q

α α

δ φ φ

φ φ

− ∇ + ∇ ⋅∇

+ ∇

= −

∑ ∫

∫

r rh

 (15) 

This expression is simplified by defining two terms.  The first is a vector quantity known 

as the derivative coupling term (DCT): 

 ( ) ( )* , ,
Nij i N e q j N e eq q q q dqτ φ φ= ∇∫

rr  (16) 

The second is a scalar quantity known as the kinetic coupling term: 

 ( ) ( )* 21 , ,
2 Nij i N e q j N e eq q q q dqκ φ φ= ∇∫  (17) 

Using eqs. (16) and (17) gives 

 { } ( ) ( ) ( )
2

21 2 2
2 N N

i
ij q ij q ij j N elec i N

j
F q E E F q

mα α

δ τ κ− ∇ + ⋅∇ + = −∑∑
rh r  (18) 
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When the derivative and kinetic coupling terms are small they can be ignored, and the 

system is said to behave adiabatically.  This is the Born-Oppenheimer approximation.  

Eliminating those terms from eq. (18) gives the simpler form 

 ( ) ( )
2

21
2 N

i
q elec i N i NE F q EF q

mα α

 
− ∇ + = 

 
∑h

 (19) 

Here eq. (19) has been cast in the form of the time-independent Schrödinger equation 

where ( )i NF q  is interpreted as the nuclear wavefunction.  This wavefunction only 

depends on one adiabatic PES, i
elecE .  If the derivative and kinetic coupling terms cannot 

be ignored, the system is said to behave nonadiabatically, and the coupling in eq. (18) 

cannot be neglected.  For this reason the derivative and kinetic coupling terms are 

collectively known as nonadiabatic coupling terms (NACTs). 

The Adiabatic to Diabatic Transformation 
 
 Many polyatomic systems behave nonadiabatically [10], that is, they contain 

nonnegligible NACTs when expressed in the adiabatic representation as in eq. (18).  The 

clearest predictor of nonadiabatic behavior is when the adiabatic electronic PESs i
elecE are 

close together [11].  This is seen in the generalized Hellman-Feynman theorem which 

gives the derivative coupling terms in the adiabatic representation [12]: 

 
( ) ( )ˆ

NN q elec N
ij j i

elec elec

i q H j q
E E

τ
∇

=
−

r
r  (20) 

The 2B H+  system is an example of a system with nonnegligible NACTs.  The 

unpaired 2 p electron in ground-state boron gives rise to a 2 P  spectroscopic term 

involving three degenerate atomic orbitals.  This degeneracy is slightly lifted when in the 
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presence of a hydrogen molecule, but they remain energetically very close.  Eq. (20) 

predicts that these three orbitals will be strongly coupled to each other, but only weakly 

coupled to the other atomic orbitals from when they are separated energetically.   

The problem in solving the coupled set of equations on the adiabatic basis is 

handled by transforming to the diabatic basis in which the NACTs are negligible [13].  

This is accomplished via a unitary transformation and results in a form of the time-

independent Schrödinger equation where the wavefunction is coupled by the diabatic 

PES. 

In the interest of computational efficiency, the basis of electronic eigenstates is 

truncated to only include those states that are strongly coupled.  These are the three 

adiabatic PESs corresponding to the three 2 P states.  These PESs are labeled 21 'A
V , 22 'A

V  

and ''AV , where the subscripts are inherited from the sC symmetry displayed by the 

2B H+  system [1].  For this calculation the 21 'A
V , 22 'A

V  and ''AV  PESs were calculated by 

Dr. David Yarkony using a multi-reference configuration interaction calculation.  

 The adiabatic time-independent Schrödinger equation (18) is represented in the 

truncated basis consisting of these three states. 

 

2 2

2 2

2

12 12

22

12 12

2

1 ' 1 '

2 ' 2 '

'' ''

10 0 0 0

1
0 0 0 0

2

0 0 0
0 0

0 0

0 0

0 0

N

N

N

N

N

q
A A

q

q A A

q

q

A A

A A

A A

m m

m m

m

V F

V F

V F

α α α α

α αα α

α α

τ κ

τ κ

∇
⋅ ∇ +

∇
− − ⋅ ∇ +

∇

+ =

                                   
  

           

∑ ∑

∑ ∑

∑

rr

rh r

2

2

1 '

2 '

''

0 0

0 0

0 0

A

A

A

E F

E F

E F

  
  
    
  

 (21) 
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  Since the basis has been truncated to include three PES, the adiabatic to diabatic 

transformation matrix is 3 3× .  The restriction that the electronic wavefunctions are real, 

along with the fact that states with ''A symmetry type will not mix with those with 'A

symmetry means the transformation matrix may be represented by an orthogonal matrix 

parameterized by a single angle [14], [15]: 

 ( )
( )( ) ( )( )
( )( ) ( )( )

cos sin 0

sin cos 0

0 0 1

N N

AD N N N

q q

U q q q

γ γ

γ γ

 −
 

=  
  
 

 (22) 

This transformation matrix relates the adiabatic wavefunctions to the diabatic 

wavefuctions as 

 
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

2 ' 2 ' 2 '

2 ' 2 ' 2 '

1 1 2

2 1 2

, , cos , sin

, , sin , cos

A D D
n e n e n n e nA A A

A D D
n e n e n n e nA A A

q q q q q q q q

q q q q q q q q

φ φ φ

φ

γ γ

φ γ φ γ

= +

= − +
 (23) 

Substituting eq. (23) into the definition of the derivative coupling terms in eq. (16) gives 

an expression for the derivative coupling terms in the diabatic representation in terms of 

the derivative coupling terms in the adiabatic representation and the mixing angle γ .  The 

derivative coupling terms may be shown to be antihermitian, which simplifies this 

relation to  

 ( )12 12n

D A
q nqτ γ τ= ∇ +

rr r  (24) 

The requirement that the mixing angle causes the diabatic coupling terms to be zero gives 

 ( )12 n

A
q nqτ γ= −∇

rr  (25) 

and the mixing angle ( )Nqγ  may be calculated by performing a line integral through the 

vector space of the derivative coupling terms at each nuclear configuration: 
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 ( )
0 0 0

0 0 0

,12 ,12 ,12 0, ,
R r

A A A
R rr Rr R

R r

R r dR d dr
θ

θθ θ
θ

γ θ τ τ θ τ γ= + + +∫ ∫ ∫  (26) 

 The adiabatic to diabatic transformation is applied to the truncated basis 

representation in eq. (21) to give the diabatic representation 

 

2

2

2

ˆ
0 0

0 0 0
ˆ1 0 0 0 0 0

2
0 0 0 0

ˆ
0 0

xx xz zz zz

xz zz xx xx

yy yy yy

p
m

V V F E F
p V V F E F
m

V F E F
p
m

α

α α

α

α α

α

α α

  
  
                    − + =                        

      

∑

∑

∑

 (27) 

where the NACTs have been eliminated and the diabatic wavefunctions are coupled by 

the diabatic PES. 

 

The Asymptotic Representation 

 To facilitate wavepacket propagation as required by the channel-packet method 

(described in a later section), the Hamiltonian can be represented in an asymptotic basis.  

Before introducing this basis it is necessary to establish a new coordinate system. 

Body Fixed and Space Fixed Coordinates 

 The coordinates used by Weeks et al [16] are shown in Figure 2. 
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Figure 2.  Space and Body Fixed Coordinate System for B+H
 

2 

 

The 2B H+ system is described using the Jacobi coordinates: R is the distance 

from the boron atom to the center of mass of the hydrogen molecule; r is the hydrogen 

bond length; θ is the angle formed between the hydrogen axis and the line connecting the 

boron atom to the hydrogen center of mass.  The space fixed axes are labeled , ,X Y Z  

while the body fixed axes are labeled , ,x y z .  Both have their origin at the 2B H+  center 

of mass, which in the figure is displaced away from the boron atom for visualization 

purposes.  The body fixed z axis contains both the boron atom and the hydrogen molecule 

center of mass.  The azimuthal angle φ is formed between the body fixed x axis and the 

projection of the hydrogen molecule’s axis onto the xy plane, and is omitted from the 

figure for clarity.  The body fixed y axis is constrained to lie in the XY plane.  The body 

fixed axis system is oriented in the space fixed coordinate axes using the Euler angles α 

and β.  The angle α is defined between the projection of the z axis onto the XY plane and 
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the X axis.  β is the polar angle formed between the body fixed z axis and the space fixed 

Z axis. 

 Using these space fixed and body fixed coordinates, the Hamiltonian may be 

rewritten in the center of mass frame [17] as 

 2

2 2 2 2

2 2 2 2

2 2
, ,

ˆˆˆ ˆˆ ˆ ˆ ˆ ˆ
2 2 2 2

H BR r
el el el so off

B H H H B H

p p j LH H H V H E
r Rµ µ µ µ

= + + + + + + + +  (28) 

The first four terms in eq. (28) represent the nuclear kinetic energy operators using the 

reduced mass of the nuclei 
2,

2
2

B H
B H

B H

m m
m m

µ =
+

, the reduced mass of the hydrogen 

molecule 
2 2

H
H

mµ = , and the momentum operators for their respective coordinates, ˆ Rp

and ˆ rp .  The angular momentum operator ĵ describes the 2H rigid rotor, while L̂

corresponds to the rigid rotor composed of the boron atom and the hydrogen molecule 

center of mass.  2ˆ H
elH and ˆ B

elH  represent the kinetic energy and coulomb potential of the 

electrons in the molecule and the atom, while êlV  represents the coulomb potential 

between the boron atom and the hydrogen molecule.  ˆ
soH  is the spin-orbit Hamiltonian 

for the boron atom, and offE is an arbitrary energy offset.   

 A complete basis for this system is given by , , , , , ,aJ j j
l s r R

MP k ω
 where the 

coupling scheme is identified as “case 1A” by Dubernet and Hutson [17]. 
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Figure 3.  Angular Momentum Coupling Scheme 
 

 

The electronic orbital angular momentum  l and spin s of the boron’s unpaired 

outer electron couple to give aj  with projection ω onto the body fixed z axis.   The 

angular momentum of the 2H  rigid rotor is j with a projection k onto the body fixed z 

axis, and there is assumed to be no coupling between j and aj .  The total angular 

momentum is aJ L j j= + + , which in the centrifugal sudden approximation [18] has a 

projection onto the body fixed z axis of P k ω= +  and a projection onto the space fixed z 

axis of M.   

This basis  , , , , , ,aJ j j
l s r R

MP k ω
 has an infinite number of states, but may be 

truncated to include only the range of states accessible as determined by the kinetic 

energy of the 2B H+  system.  The electronic basis has been truncated to only include the 

boron 2 P  states, which gives 1l = , 1/ 2s =  which limits aj to the values 1/ 2,3 / 2 .  

Additionally the hydrogen molecule is restricted to the ground electronic state.  This 



16 
 

work considers only a total angular momentum 1/ 2J = .  A more concise notation for 

the basis is obtained by including only those labels which are not constant. 

 , , , , , , , , ,
 

a aJ j j j j
l s r R r R

M P k kω ω
→  

Representing the Hamiltonian 

 The Hamiltonian in eq. (28) is now represented in this basis.  The details behind 

the results presented here are covered in more detail by Weeks [16] and again by Garvin 

[1]. The matrix elements of the first three terms in eq. (28) are diagonal in this basis.  

They are 

 
2 2

2 2 2

'2
, ,

' ' ˆ 1, , ', ' , , ,
' ' 2 2

a aR
x x

B H B H

j j j jpr R r R R
k k R R

δ
ω ωµ µ

− ∂
=

∂
h

 (29) 

 
2 2

2 2 2

'2

' ' ˆ 1, , ', ' , , ,
' ' 2 2

a ar
x x

H H

j j j jpr R r R r
k k r r

δ
ω ωµ µ

− ∂
=

∂
h

 (30) 

 ( )
2 2

22

'2 2

ˆ' ' 1
, , ', ' , , ,

' ' 2 2
a a

x x
H H

j j j j j jjr R r R
k kr r

δ
ω ωµ µ

+
=

h
 (31) 

where ( ) ( )'' '
' ' ' ' ' ' 'a aj jJ J j j

x x M M P P k k r r R Rω ωδ δ δ δ δ δ δ= − − .  The remainder of the terms are not 

diagonal.   

The fourth term is obtained by solving for L̂ in terms of the total angular 

momentum Ĵ , then expanding using raising and lowering operators.

 
( )22

2 2 2

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2
z z

a

a z z a a z a a z a

L J j j

J j j J j J j J j J j J j J j j j j j
− + +

+ − + −
− + +

= − − =

+ + − − − − − − + +
 (32) 

Each term in eq. (32) is evaluated to give the full expression 
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( )

( ) ( ) ( ) ( ){ }
( ) ( )( ) ( ) ( )( ){ } ( )

( ) ( )( ) ( ) ( )( ){ }

2 2

2

2
2

2 2
, ,

2
2

'2
,

1/2 '
' ' ' 1 ' '

ˆ ˆ ˆˆ' ' ' '
, , ', ' , , , , , ', ' , , ,

' ' ' '2 2

1 1 1 2 2
2

1 1 1 1 '

1 1 1 1

a a

aa a a a

B H B H

a a x x
B H

J J
M M j j k k j j

a a

J j jj j j j j j j jL
r R r R r R r R

k k k kR R

J J j j j j k k
R

J J P P j j k k R R

J J P P j j

ω ω

ω ω ω ωµ µ

ω ω δ
µ

δ δ δ δ δ δ

ω ω

− −
=

= + + + + + − + +

+ + − + − −

+ + − + −




m

h

m m

m m ( )

( ) ( )( ) ( ) ( )( ){ } ( )

1/2 '
' ' ' ' ' 1

1/2 '
' ' ' ' 1 ' ' 1

'

1 1 1 1 '

a a

a a

J J
M M j j k k j j

J J
a a M M P P j j k k j j

R R

J J k k j j R R

ω ω

ω ω

δ δ δ δ δ δ

ω ω δ δ δ δ δ δ δ±

−

+ + − ± + − −

m

mm

 (33) 

 The second and third terms in eq. (33) are neglected under the centrifugal sudden 

approximation. 

The spin-orbit Hamiltonian is given by ˆˆ ˆsoH l sζ= ⋅ , where ζ is treated as a 

constant under the pure precession approximation [6], and when represented in the 

angular momentum basis is given by 

 ( ) ( ) ( ){ } '

' ' ˆ, , ', ' , , , 1 1 1
' ' 2

a a
so a a x x

j j j j
r R H r R j j l l s s

k k
ζ δ

ω ω
= + − + − +  (34) 

 The remaining terms are 2ˆ ˆ ˆH B
el el el offH V H E+ + + .  These are represented in the 

asymptotic electronic basis 1, ,g l+Σ Λ ≡ Σ ⊗ Λ  consisting of the ground state of the 

hydrogen molecule electronic Hamiltonian 1
g
+Σ  and the three 2 P states of the boron 

electronic Hamiltonian, given by ,l Λ  with possible values 1, 1,0,1l = Λ = − .  In the 

asymptotic limit the term ˆ', ,B
elHΣ Λ Σ Λ  is constant, and ˆ', ,B

off elE H= − Σ Λ Σ Λ  is 

chosen to eliminate these terms.   



18 
 

The representation of the remaining terms 2
' ' ˆ ˆ, , ', ' , , ,
' '

a aH
el el

j j j j
r R H V r R

k kω ω
+ is 

accomplished using the numerically determined diabatic electronic potential energy 

surfaces from equation (27).  These are cast in a new form by expanding in terms of 

reduced rotation matrix elements which are related to the associated Legendre 

polynomials ( )cosl
mP θ  by ( ) ( ) ( ) ( )1/2

0 !/ ! cosl l
m md l m l m Pθ θ= − +   .  This expansion 

takes the form  

 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

00
0

10
1

00 20
0 2

00 20
0 2

, , , ( )

, , , ( )

, , , ( ) , ( )

, , , ( ) , ( )

D
zz zz

D
xz xz

D
xx s d

D
yy s d

r r

r

r r

r

r r r r

r r

r r r r

r r

V r R V r R d

V r R V r R d

V r R V r R d V r R d

V r R V r R d V r R d

λ λ

λ

λ λ

λ

λ λ λ λ

λ λ

λ λ λ λ

λ λ

θ θ

θ θ

θ θ θ

θ θ θ

=

=

= =

= =

=

=

= +

= −

∑

∑

∑ ∑

∑ ∑

 (35) 

The expansion coefficients , , ,r r r r
zz xz s dV V V Vλ λ λ λ  in equation (35) are obtained by 

performing a multipole expansion of 2ˆ ˆ', ' ,H
el elV HΣ Λ + Σ Λ .  Integrating over 

molecular and atomic electronic coordinates, with the exception of the polar and 

azimuthal angles of boron’s outer 2p electron, gives the matrix elements [6] 

 

( )

( ) ( )

{ ( )

2

2

2

'

' ' '

2 '

,

ˆ ˆ, , ', ' ,

ˆ', ' , ', ' ,
| |

, ( , ) ' ( , )

1 1 1 1
3 , ( , ) ( 1)

' 0 0 0

ar

r a
r a

r

r a
r a

HD
el el

mi aj H
el

mi aj

a a H

a a

i j

V r R V H
q q

H
r r

V r R C C V r

V r R C

λλ
λ λ µ µ µ

λ λ µ

λ
λ λ µ µ

λ λ µ

θ

θ φ θ φ δ δ δ

λ λ
θ φ

µ

Λ Λ

− Σ Σ Σ Σ Λ Λ

−Λ

= Σ Λ + Σ Λ

= Σ Λ Σ Λ + Σ Λ Σ Λ∑
−

= Λ Λ +

    
= −    −Λ − Λ    

∑

∑

v v

( ) ( ) }
2

0
0 ' ',HV r C θ φ δ δΣ Σ Λ Λ



+

 (36) 
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Here the terms indicated by 
. . .
. . .

 
 
 

 are the Wigner 3j symbols and ( ),rCλ
µ θ φ are 

modified spherical harmonics.  Collisional energies considered here will not allow an 2H  

electronic transition so 'δΣ Σ may be removed.  The value aλ  is restricted to 0,1, 2aλ =  by 

the triangle inequality 1 1 1a aλ λ− ≤ ≤ + .  This reduces equation (36) to 

 

( ) ( )

( )

( ) ( )
2

3 ' 1/2 ,0
' 0 0 '

1/2
2 '

2 , '

0
0 '

1 0 1
, , ( , ) , ( 1) (3)

' 0

1 2 16, ( 1)
'5

,

r

r
r

r

D

H

V r R C V r R

V r R

V r C

λ µ
µ λ

λ µ

λ µ µ

θ θ φ δ

δ
µ

θ φ δ

−Λ
Λ Λ Λ Λ

−Λ
Λ −Λ

Λ Λ

  
= − +  −Λ Λ 

  − +   −Λ − Λ   


∑

 (37) 

A further restriction 'µ = Λ − Λ  is obtained by considering the bottom row of the Wigner 

3j symbols, where it is required that ' 0µ−Λ − − Λ = .  Defining a new form of expansion 

coefficients ( ) ( ),0 ,r

a r a
r

V C V r Rλ
λ µ µ λ λ µ

λ

θ= ∑  the µ matrix elements are 

 ( )
2

2

2

1
00 205 3 6

21 225 5
0

2
00 2053 3

21 215 5
0

1
00 2056 3

22 215 5
0

1 0 1

1

, ,
0

1

r

r

r

H

D

H

H

V V
V V

V

V VV r R
V V

V

V V
V V

V

λ

λ

λ

δ

θ
δ

δ

−
−

− −
+

+=
−

+

−
− −

+

 (38) 

Transforming to a Cartesian basis ( )1 1 1
2

x = − + − , ( )1 1
2
iy = + − , 0z =  

gives  
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( )

2

2

2

62
00 20 0 215 5

6 61
21 00 20 22 05 5 5

61
00 20 22 05 5

0

0

0 0

, ,

r

r

r

H

H

H

D

z x y

z V V V V

x V V V V V

y V V V V

V r R

λ

λ

λ

δ

δ

δ

θ

+ +

− + +

− − +

=

 (39) 

Each matrix element in equation (39) is compared to the expansion of the 

numerical diabatic potential energy surfaces in equation (35), for which the fit process 

has given expansion coefficients , , ,r r r r
zz xz s dV V V Vλ λ λ λ  as a function of r and R.  These are 

related to the expansion coefficients ( ),
r a

V r Rλ λ µ  by 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

2

1
000 3

5
20 3

5
21 6

5
22 6

, , 2 ,

, , ,

, ,

, ,

rzz s H

zz s

xz

d

r r
r

r r
r

r
r

r
r

V r R V r R V r R V r

V r R V r R V r R

V r R V r R

V r R V r R

λ
λ λ

λ

λ λ
λ

λ
λ

λ
λ

δ = + − 
 = − 

=

=

 (40) 

Having obtained the expansion coefficients the interaction electronic potential 2ˆ ˆ H
el elV H+  

is represented in the angular momentum basis.  This is given by [16] 

 ( )( ) ( ) ( )( ){ } ( )( ){ }

( )

2

'

1/2 1/2

'
' '

' ' ˆ ˆ, , ', ' , , ,
' '

, 1 2 1 2 ' 1 2 1 2 ' 1 2 1

' ' ' '
'

' 0 0 0 ' 0 0 0

r a
r a

a aH
el el

k s
a a

r r a a a a a a a J J
M M P P v v

j j j j
r R H V r R

k k

V r R l j j j j

j j j j j j j j l l
R R

k k l s l γ λ

ω
λ λ µ

λ λ µ

ω ω

λ λ λ λ λ
δ δ δ δ

µ ω µ ω

+ −

+ =

− + + + + +

      
× −      − − −      

∑  (41) 

where terms of the form 
 
 
 

L
L

 are 3 j− symbols and those of the form 
 
 
 

L
L

 are 6 j−  

symbols. 

 



21 
 

The Effective Diabatic Potential Energy Surfaces for B+H2 

 Taken together, eqs. (31), (33), (34) and (41) give the effective diabatic potential 

energy matrix elements 

 ( ) 2
'

2 2

2 2

2 2
,

ˆˆ' ' ˆ ˆ ˆ, , , ', ' , , ,
' ' 2 2

a aHD
eff el el so

H B H

j j j jj LV r R r R H V H r R
k kr Rγ γ ω ωµ µ

= + + + +  (42) 

where the label γ  represents appropriate values of J, M, P, j, k, aj  and ω.  These 

represent surfaces for which the time-dependent Schrödinger equation can be solved.  

The surfaces are two dimensional (for r and R) and each is labeled by the choice of γ .  

The diabatic effective potential energy surfaces used in this work were calculated by 

Garvin [1].  

The full Hamiltonian is obtained by adding the nuclear kinetic energy terms from 

eqs. (29) and (30) to the effective potential in eq. (42).  Reduced wavefunctions 

( ) ( ), , , ,r R t rR r R tΦ = Ψ  are introduced to simplify the radial form of the kinetic energy 

operators, giving the time-dependent Schrödinger equation as 

 

( )
( )

( )
( )

( ) ( )
( ) ( )

2 2

1 11 12 1

2 21 22 2

2 2 2 2

2 2
,

11 12

21 22

, , , ,
, , , ,

1 0
0 1

2 2

, ,
, ,

B H H

D D
eff eff
D D

eff eff

r R t H H r R t
i r R t H H r R t

t

R r

V r R V r R
V r R V r R

µ µ

Φ Φ    
∂     Φ = Φ    ∂         

   ∂ ∂   = − −   ∂ ∂     

 
 

+ 
 
 

L
h L

M M M O M

L
h h L

M M O

L
L

M M O

( )
( )

1

2

, ,
, ,

r R t
r R t

 Φ 
  Φ  

    M

 (43) 
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Eq. (43) shows that each wavepacket is dependent on more than one effective diabatic 

PES ( ) '
,D

effV r R
γ γ

 as it evolves in time.   

Structure of the Effective Diabatic Potential Energy Matrix 
 
  

The effective diabatic potential energy matrix ( ) '
,D

effV r R
γ γ

 is block diagonal as 

governed by the Kronecker deltas in eqs. (31), (33), (34) and (41).  These give the matrix 

a structure of infinite dimensional blocks arranged in a hierarchy.  The largest are labeled 

by their value of total rotational energy J.  Each J block is subdivided into identical 

blocks labled by M.  This study is restricted to 1/ 2J = .  This block is shown in Figure 4. 

 

 

 

 

 

 

Figure 4.  Structure of the J = 1/2 Block of the Effective Potential Energy Matrix 
 

Since the M blocks are identical, only 1/ 2M = is considered.  Under the centrifugal 

sudden approximation [18] 0P∆ = , so we may consider only the 1/ 2P =  block. 
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 The 1/ 2, 1/ 2, 1/ 2J M P= = =  block is further divided into orthohydrogen and 

parahydrogen blocks.  In this work only transitions from the ground rotational state 0j =  

are considered, so only the even valued j states corresponding to the parahydrogen block 

are considered.  The requirement 1/ 2k Pω+ = =  along with 31
2 2,aj =  restricts the 

number of states available for each value if j.  Specifically they are 

 

31
2 2
1 1
2 2

3 3 3 31 1
2 22 2 2 2

3 31 11 1
2 22 2 2 2

0 0
0 ,

0 0

2,4,... , , , , ,
1 02 1 0 1

a

a

j j
j

k

j jj j j jj j
j

k

ω

ω

= → =

= → =
−− − −

 (44) 

The total number of these states is infinite but may be truncated to only include those 

states which are energetically accessible as determined by the total energy of the 

wavepacket being considered.  Truncating to only include values up to maxj  results in the 

effective potential energy matix having a dimension given by  

 max2 3n j= +  (45) 

This n is also referred to as the basis size, since the effect of truncating is to restrict the 

number of basis states in which we represent the Hamiltonian to n. 

As seen in Eq. (43) the off-diagonal terms of ( ) '
,D

effV r R
γ γ

 couple the evolving 

wavepackets, allowing for transitions between the various surfaces.  These transitions 

represent a wavepacket in an initial channel γ changing to a final channel 'γ  as a result 

of scattering.  The term channel refers to a specific arrangement of 2B H+ together with a 

choice of quantum numbers.  The process for calculating the probability of making these 
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transitions is the subject of subsequent sections on scattering and the channel packet 

method. 

 Nonadiabatic behavior is most frequently associated with coupling between 

electronic and nuclear degrees of freedom.  Representing the Hamiltonian in the angular 

momentum basis , , , , , ,
 

aJ j j
l s r R

M P k ω
 has resulted in an effective potential energy 

matrix D
effV  which contains off-diagonal terms.  This nonadiabaticity is the result of 

coupling between rotational and vibrational degrees of freedom as well as coupling 

between electronic and nuclear degrees of freedom. 

 

The Split-Operator Propagator 

 The time-dependent Schrödinger eq. (2) gives the solution to the initial-value 

problem [19] 

( ) ( ) ( )
ˆ

ˆ, ,0 ,0
itH

x t e x U xψ ψ ψ
−

= =h  (46) 

In many cases this general form of the evolution operator Û must be approximated.  The 

split-operator method is one technique for calculating Û , thereby giving the time 

evolution of an initial state based on knowledge of the system’s Hamiltonian. 

The Split-Operator Approximation 
 

The split-operator method uses the approximation [20] 

 ( )
( )

( )
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

32 2 2 2ˆ
i V T tiH t i i i i i iV t T t V t V t T t V t

U t e e e e e O t e e e
+ ∆∆

− − − ∆ − ∆ − ∆ − ∆ − ∆ − ∆
∆ = = = + ∆h h h h h h h h;  (47) 
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where ( )3O t∆  represents terms that are third-order or higher in t∆ . 

 The equivalence of this approximation up to third-order or higher terms may be 

shown by considering Taylor series expansions:    

( ) ( )

( )

( )

ˆ ˆ
2 2 3 2 2 32 2

1 22 2

2 2 3
32

2 2 2 2 2 3
42 2 2

2

1 1ˆ ˆ ˆ ˆ1 1
2 8 2

1ˆ ˆ1
2 8

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ1
2 2 2 8
1ˆ1

2 8

i i iV t T t V t i ie e e V t V t O t T t T t O t

i V t V t O t

i iT t T t V t VT t V t O t

i V t

− ∆ − ∆ − ∆   = − ∆ − ∆ + ∆ − ∆ − ∆ + ∆ ⋅  
  

 − ∆ − ∆ + ∆ 
 

 = − ∆ − ∆ − ∆ − ∆ − ∆ + ∆ ⋅ 
 

− ∆ −

h h h

h h h h

h h

h h h h h

h h ( )

( )

( )

2 2 3
3

2 2 2 3
42

2 2 3
32

2 2 2
2 2

2 2
2

ˆ

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ1
2 2 4

1ˆ ˆ1
2 8

1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ1
2 8 2 2 2

1 1ˆ ˆ ˆ ˆ
2 4

V t O t

i T V t T VT V t O t

i V t V t O t

i iV t V t T V t T V V t

T VT V t

 ∆ + ∆ 
 

    = − + ∆ − + + ∆ + ∆ ⋅        
 − ∆ − ∆ + ∆ 
 

   = − ∆ − ∆ − + ∆ − + ∆   
   

 − + + ∆ 
 

h h

h h

h h h h

h ( )

( ) ( ) ( )

( ) ( ) ( )
( )

2 3
5

2 2 2 3
52

2 2 3
52

ˆ ˆ

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1
2
1ˆ ˆ ˆ ˆ1

2
i V T t

O t

i V T t V TV VT T t O t

i V T t V T t O t

e
+ ∆

−

+ ∆

= − + ∆ − + + + ∆ + ∆

= − + ∆ − + ∆ + ∆

= h

h h

h h

 

As shown in eq. (47), the split-operator approximation ignores all terms that are third-

order or higher in t∆ .  Therefore the term ( )3O t∆ is the error associated with this 

approximation, which can be made arbitrarily low by selecting a sufficiently small time 

step t∆ . 
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Diagonal Representations 
 
 The motivation for this approximation is the relative simplicity gained by 

representing each operator in a basis in which it is diagonal [20].   

 When the effective potential V is not diagonal, as is seen for the effective diabatic 

PESs of 2B H+ , the matrix representation of V can be diagonalized using a unitary 

transformation [21] into the adiabatic representation.  This transformation will depend on 

the coordinates being propagated over – in the case of the diabatic effective PESs of 

2B H+ , the transformation may be represented by ( ),ADU r R , and the potential is 

diagonalized at each point on the grid by 

 †A D
eff AD eff ADV U V U=  (48) 

The wavepacket is also transformed from the diabatic to adiabatic representation by 

 †A D
ADUφ φ=  (49) 

 If the matrix representation of V̂ and T̂ are diagonal in the appropriate 

representation, so will the matrix representation of the exponential of those operators, 

ˆ
2
i V t

e
− ∆

h  and 
ˆi T t

e
− ∆

h .  Recall that an exponential with a matrix in the argument is defined by 

its Taylor series expansion.  Successive powers of a diagonal matrix will be diagonal, and 

the series may be reduced to a diagonal matrix whose elements are the exponent of the 

original matrix.  For example, if V is the matrix representation of V̂ in a basis where it is 

diagonal, 

 
11

22

33

0 0
0 0
0 0

V
V V

V

 
 =  
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then 

 

11

22

33

2

2 2

2

0 0

0 0

0 0

i V t

i iV t V t

i V t

e

e e

e

− ∆

− ∆ − ∆

− ∆

 
 
 
 =
 
 
 
 

h

h h

h

 (50) 

Changing Representations: The Fourier Transform 
 

Assuming the potential energy operator V̂ and the kinetic energy operator T̂ are 

functions only of the spacial coordinates and momentum respectively, V̂ is diagonal in 

the coordinate adiabatic representation, while T̂  is diagonal in the momentum diabatic 

representation.   

To show this, consider the matrix element of a potential which depends only on 

the coordinate x, ˆ'x V x .  Since V̂  is only a function of x, we may expand it as a series 

in terms of x̂ . 

 
2

0 1 2

2
0 1 2

ˆ ˆ ˆ' ' ...

ˆ ˆ' ' ' ...

x V x x C C x C x x

x C x x C x x x C x x

= + + +

= + + +
 

Since the x  are eigenstates of the x̂ operator, this is 

 2
0 1 2

ˆ' ' ' ' ...j jx V x C x x C x x x C x x x= + + +

 
 ( ) ( )2

0 1 2
ˆ' ... 'x V x C C x C x x xδ= + + + −  (51) 

Since the eigenstates of the position operator are orthogonal, the matrix element is 

nonzero only if it is on the diagonal.  The same may be shown for ˆ'k T k . 
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 Similar to how the unitary transformation ADU  is used to change between the 

diabatic and adiabatic representations, there is a transformation to move between the 

coordinate and momentum representations – the Fourier transform.  To understand how 

this is done, consider the coordinate representation of our time-evolution operator on an 

initial state: 

 ˆ ˆ ˆ/2 / /2iV t iT t iV tx e e e ψ− ∆ − ∆ − ∆h h h  

Using the completeness relation ˆ  x x dx k k dk I= =∫ ∫ , where Î is the identity 

operator, we may rewrite this as  

 
ˆ ˆ ˆ/2 / /2

ˆ ˆ ˆ/2 / /2

ˆ ˆ ˆ/2 ''' ''' ' ' / '' '' /2 ' ' ''' ' '' '

ˆˆ ˆˆ ˆ

    

iV t iT t iV t

iV t iT t iV t

iV t iT t iV t

x e e e

x e IIe IIe I

x e x x k k e k k x x e x x dx dk dk dx dx

ψ

ψ

ψ

− ∆ − ∆ − ∆

− ∆ − ∆ − ∆

− ∆ − ∆ − ∆

=

= ∫ ∫ ∫ ∫ ∫

h h h

h h h

h h h

 

This may be rearranged by moving terms that are not functions of the respective 

integration variables.

 

 
ˆ ˆ ˆ/2 / /2

ˆ ˆ ˆ/2 ''' ''' ' ' / '' '' /2 ' ' ''' ' '' '

iV t iT t iV t

iV t iT t iV t

x e e e

x e x x k k e k k x x e x x dx dk dkdx dx

ψ

ψ

− ∆ − ∆ − ∆

− ∆ − ∆ − ∆= ∫ ∫ ∫ ∫ ∫

h h h

h h h
 

Eqs. (51) and (50) have shown that the terms ˆ' /2iV tx e x− ∆ h  and ˆ' /iT tk e k− ∆ h  are 

diagonal, that is, they contain the delta functions ( ) ( )' ',x x k kδ δ− −  respectively.  This 

eliminates three of the integrals giving 

 
ˆ ˆ ˆ/2 / /2

ˆ ˆ ˆ/2 ' / ' ' /2 ' ' '

iV t iT t iV t

iV t iT t iV t

x e e e

x e x x k k e k k x x e x x dkdx

ψ

ψ

− ∆ − ∆ − ∆

− ∆ − ∆ − ∆= ∫ ∫

h h h

h h h
 

Recalling i j i j ijx x k k δ= = , this is 
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ˆ ˆ ˆ/2 / /2

ˆ ˆ ˆ/2 ' ' / ' ' /2 ' ' 

iV t iT t iV t

iV t iT t iV t

x e e e

x e x x k dx k e k k x dk x e x x

ψ

ψ

− ∆ − ∆ − ∆

− ∆ − ∆ − ∆

=

∫ ∫

h h h

h h h  (52)
 

Here we can pause and identify these terms.  ˆ /2iV tx e x− ∆ h  is the coordinate 

representation of the first part of the time-evolution operator.  ˆ /iT tk e k− ∆ h  is the 

momentum representation of the second part.  The remaining terms, ' ' x k dk∫  and 

' ' k x dx∫ , represent the transformation between the two representations.  In fact, 

recognizing 'x k  as the coordinate representation of the momentum eigenstate, which 

are plane waves, we can rewrite this as 1
2

ikxe dk∫ , meaning we can cast this as an 

Inverse Fourier Transform, and ' ' k x dx∫ , its Hermitian conjugate, as the Fourier 

Transform. 

This is an important result in terms of ease of computation.  In practice, 

transformation between the two representations is typically accomplished using a Fast 

Fourier Transform (FFT) algorithm.   On a grid of size N, the FFT requires ( )2logO N N  

operations [22], making this propagation scheme viable for relatively large grids. 

The Split-Operator Calculation 

 Putting the transformations described in eqs. (48) and (52) together, if given a 

wavepacket in the diabatic coordinate representation at time 0t = , ( ), ,0D r Rφ , first 

transform this to the adiabatic representation 

 ( ) ( )† , , ,0AD
DU r R r Rφ  
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Next apply the first of the potential operators /2AiV te− ∆ h   

 ( ) ( )- / †2 , , ,0
A D

AD
iV t U r R r Re φ∆ h  

where AV  is the diagonal adiabatic coordinate representation of the potential.  This is 

transformed back into the diabatic representation and then moved into the momentum 

representation via the Fourier transform, given by the operator F  

 ( ) ( )/2 † , , ,0
A

AD
iV t D

ADe U r R r RFU φ− ∆ h  

This is multiplied by the exponential kinetic energy operator /DiT te− ∆ h  where DT  is 

diagonal in the diabatic momentum representation, then moved back to the coordinate 

representation via the inverse Fourier transform 1F −  

 ( ) ( )/ †1 2/ , , ,0
AD iV t D

AD AD
iT tF e FU e U r R r Rφ−− ∆− ∆ hh  

The wavepacket is again transformed to the adiabatic representation and multiplied by the 

adiabatic representation of the second of the exponential potential operators 

 ( ) ( )1 / /2 †/2 † , , ,0
AA iT t iV t D

AD A
V t

D D
i

A F e FU e U r Re U r Rφ− − ∆ −− ∆∆ hh h  

Finally this is transformed to the diabatic representation to yield the wavepacket at t t= ∆  

 ( ) ( ) ( )/2 † 1 / /2 †, , , , ,0
A AD iV t iT t iV t D

AD AD AD ADr R t U e U F e FU e U r R r Rφ φ− ∆ − − ∆ − ∆∆ = h h h  (53) 

 The choice to begin and end with the wavepacket in the diabatic representation is 

arbitrary.  Propagating in the adiabatic representation eliminates the first and last 

transformations from/to the diabatic representation. 

 ( ) ( ) ( )/2 † 1 / /2, , , , ,0
A AA iV t iT t iV t A

AD ADr R t e U F e FU e r R r Rφ φ− ∆ − − ∆ − ∆∆ = h h h  (54) 
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Scattering Theory 
 
 The split-operator propagator allows us to take a wavepacket in an initial known 

state and propagate it in time.  This tool may be applied to examine the behavior of a 

wavepacket used to describe molecular dynamics as governed by a suitable potential.  

Tracking possible changes of state in the wavepacket as a result of these dynamics is the 

domain of scattering theory. 

Asymptotic Reactants and Products 
 
 Experimentally, the actual quantum scattering event takes place on a scale that is 

unobservable.  As a result, instead of discussing the interaction event scattering theory 

relates widely separated reactants located in the asymptotic limit before a collision to 

products located in the asymptotic limit after the collision.  A reactant wavepacket in the 

asymptotic limit before coming into contact with the potential will be called inψ , while 

an asymptotic product wavepacket is called outψ . 

The Møller Operators 
 
 There are several definitions which aid in this process of relating initial states to 

asymptotic wavepackets.  The full Hamiltonian of the system can be broken into two 

parts, 0H H V= + , where V contains all terms describing the interaction between 

reactants or products [2].  The term 0H  is the asymptotic Hamiltonian describing the 

system in the asymptotic limit when 0V → , that is, where there is no interaction between 

reactants and products.  The full and asymptotic Hamiltonians are used to define a set of 

isometric operators, known as Møller operators [23]: 

 0
ˆˆ //ˆ lim iH tiHt

t
e e−

+ →−∞
Ω = hh  (55) 
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 0
ˆˆ //ˆ lim iH tiHt

t
e e−

− →∞
Ω = hh  (56) 

These operators are made up of two time-evolution operators.  The result of ˆ
+Ω  acting on 

a state ψ  is to first propagate it backwards in time to t = −∞  under the asymptotic 

Hamiltonian 0Ĥ , then to propagate it forwards in time to 0t =  using the full Hamiltonian 

Ĥ .  Similarly the effect of ˆ
−Ω on the state φ  is to propagate it forwards in time to 

t = ∞ under 0Ĥ , then to propagate it backwards in time to 0t =  using Ĥ .  

The Intertwining Relation 
 
 These two Hamiltonians and the Møller operators satisfy the intertwining relation 

[23]: 

 0
ˆ ˆ ˆ ˆH H± ±Ω = Ω  (57) 

To see this, consider 

 

0

0

0 0

0

ˆˆ ˆ ˆ // / /

ˆˆ /( )/

ˆ ˆˆ ( )/ /( )/

ˆ /

ˆ lim

lim

lim

ˆ

iH tiH iH iHt

t

iH tiH t

t

iH t iHiH t

t

iH

e e e e

e e

e e e

e

τ τ

τ

τ ττ

τ

−
± → ∞

−+

→ ∞

− ++

→ ∞

±

 Ω =   
 =  

=

= Ω

hh h h

m

hh

m

h hh

m

h

 

Differentiating with respect to τ and then setting 0τ =  yields eq. (57).  

The Møller States 
 
 The new states obtained by applying the Møller operators to a state at 0t =  are 

called the Møller states: 
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ˆ

ˆ
ψ ψ

ψ φ
+ +

− −

= Ω

= Ω
 (58) 

The Møller operators give the actual states at 0t =  that would evolve from (or to) the 

asymptote represented by the state they operate on [23].  Each state ψ at 0t =  is related 

to an in or out asymptote /in outψ  by the Møller operators: 

 ˆ ˆ
in outψ ψ ψ+ −= Ω = Ω  (59) 

The Scattering Matrix 
 
 The Møller operators are isometric, so eq. (59) may be inverted. 

 
† †ˆ ˆ ˆ

out inψ ψ ψ− − += Ω = Ω Ω  (60) 

The scattering operator is defined as 

 
†ˆ ˆ ˆS − += Ω Ω  (61) 

The scattering operator relates asymptotic reactant states to asymptotic product states. 

 ˆ
out inSψ ψ=  (62) 

If the Møller states are obtained from arbitrary product and reactant states at 0t =  as 

given by eq. (58), the overlap of the Møller states represents the probability amplitude 

that the reactant state ψ  will scatter into the product state φ  [23].  This overlap is 

given by 

 ψ ψ− +  (63) 

Recalling the definition of the Møller states, this may be written as 

 
†ˆ ˆ

Ŝ

ψ ψ φ ψ

φ ψ
− + − += Ω Ω

=
 (64) 
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So the matrix element Ŝφ ψ gives the probability amplitude that ψ  will scatter to 

φ . 

Representing the States 
 
 A common choice for representing the states ψ and φ  is the basis of 

eigenstates of the asymptotic Hamiltonian 0Ĥ , which we will label as ,kγ γ  where γ

identifies the quantum numbers associated with all internal degrees of freedom.  These 

eigenstates have eigenvalues given by 

 
2 2

0
ˆ , , ,

2
k

H k E k E k
m

γ
γ γ γ γγ γ γ

 
= = +  

 

h
 (65) 

where 
2 2

2
k
m

γh
is the relative kinetic energy and Eγ  is the energy associated with internal 

degrees of freedom, and E is the total energy. 

 Another set of states that will later prove useful is obtained by operating on this 

original basis with the Møller operators: 

 ˆ, ,k kγ γγ γ±± = Ω  (66) 

These new states are eigenstates of the full Hamiltonian Ĥ .  From the definition in (66) 

 

2 2

0

2 2

ˆ ˆ ˆ, ,
2

ˆ ,
2

k
H k E k

m

k
E k

m

γ
γ γ γ

γ
γ γ

γ γ

γ

± ±

±

 
Ω = Ω +  

 
 

= + Ω  
 

h

h
 

 
2 2

0
ˆ ˆ , ,

2
k

H k E k
m

γ
γ γ γγ γ±

 
Ω = + ±  

 

h
 (67) 
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Also using the intertwining relation 

 0
ˆ ˆ ˆ ˆ, ,H k H kγ γγ γ± ±Ω = Ω  

 0
ˆ ˆ ˆ, ,H k H kγ γγ γ±Ω = ±  (68) 

Taken together, (67) and (68) show 

 
2 2

ˆ , ,
2
k

H k E k
m

γ
γ γ γγ γ

 
± = + ±  

 

h
 (69) 

which shows ,k γ±  are eigenstates of the full Hamiltonian. 

The product and reactant states are represented in the ,kγ γ basis as 

 ( ) ,k k dkγ γ γψ η γ
∞

+

−∞

= ∫  (70) 

 ( ) ,k k dkγ γ γφ η γ
∞

−

−∞

= ∫  (71) 

Using this we can write the Møller states as 

 

ˆ

ˆ ( ) ,

ˆ( ) ,

k k dk

k k dk

γ γ γ

γ γ γ

ψ ψ

η γ

η γ

± ±

∞
±

±
−∞

∞
±

±
−∞

= Ω

= Ω

= Ω

∫

∫

 

 ( ) ,k k dkγ γ γψ η γ
∞

±
±

−∞

= ±∫  (72) 
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Note the 'sη are the same in equation (72) as in (70) and (71) – that is, the expansion 

coefficients for the Møller states in the basis of eigenstates of the full Hamiltonian are the 

same as those of the asymptotic product and reactant states in the basis of eigenstates of 

the asymptotic Hamiltonian. 

 These basis states satisfy the orthogonality relation [2] 

 
( )

( )
'

1/22
' , '

' ,, ' , ' k k

k k
k k E E S

m γ γ

γ γ γ γ
γ γγ γ δ− + = −

h
 (73) 

where , '
',k kS γ γ is the on-shell S-matrix element.  This element gives the probability 

amplitude to scatter from an initial state with momentum kγ and internal state γ to a state 

with momentum 'kγ  and internal state 'γ .  Rewrite this using 
2 2

2
k

E E
m

γ
γ= +

h
 giving 

 
( ) ( )( )2

'

1/22
' 2 2 , '

' ' ,2, ' , k km

k k
k k k k S

m γ γ

γ γ γ γ
γ γ γ γγ γ δ− + = −h

h
 (74) 

This may be recast using two properties of the Dirac delta function: 

 ( ) ( )1ax a xδ δ−=  (75) 

 ( ) ( ) ( )( )2 2 1
2

x a x a x a
a

δ δ δ− = − + +  (76) 

Rewriting (74) with (75) and (76) gives 

 
( ) ( ) ( )( )'

1/22
' , '

' , ' '2
'

2 1, ' ,
2 k k

k k mk k S k k k k
m k γ γ

γ γ γ γ
γ γ γ γ γ γ

γ

γ γ δ δ− + = − + +
h

h
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 ( ) ( )( )'

1/2

, '
' , ' '1/2

'

, ' , k k

k
k k S k k k k

k γ γ

γ γ γ
γ γ γ γ γ γ

γ

γ γ δ δ− + = − + +  (77) 

These relations are instrumental in developing a technique for calculating scattering 

matrix elements based on the correlation function between evolving reactant and product 

Møller states.  This is known as the channel packet method.   

 

The Channel Packet Method 
 
 The final piece, calculating  the S-matrix elements, has been foreshadowed by the 

orthogonality relationship expressed in (77).  This technique, known as the Channel 

Packet Method (CPM), is laid out by Weeks and Tannor [2]. 

 Begin by considering the Fourier transform of the Møller state ψ + , written in 

time-dependent form: 

 ( ) ˆ/ / /( )iEt iEt iHtA E e t dt e e dtψ ψ
∞ ∞

−
+ + +

−∞ −∞

≡ =∫ ∫h h h  (78) 

Using the expansion given by (72),  

 
( ) ˆ/ /

ˆ/ /
' '

( ) ,

( )  ,  

iEt iHt

iEt iHt

A E e e k k dk dt

k e e k dt dk

γ γ γ

γ γ γ

η γ

η γ

∞ ∞
− +

+
−∞ −∞

∞ ∞
+ −

−∞ −∞

= +

= +

∫ ∫

∫ ∫

h h

h h

 

 
( )

( )

2 2 2 2
'

2 2
'

/ /
2 2

' '

2
' '

( ) ,   

( ) ,   

k k
i E t i E t

m m

i k k t
m

A E k k e e dt dk

k k e dt dk

γ γ
γ γ

γ γ

γ γ γ

γ γ γ

η γ

η γ

   
   ∞ ∞ + − +
   +    

+
−∞ −∞

∞ ∞
−+

−∞ −∞

= +

= +

∫ ∫

∫ ∫

h h
h h

h
 (79) 
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The second part of (79) represents a delta function 

 
( ) ( )( )

2 2
' 2 22

'22
i k k t

m
me dt k kγ γ

γ γπδ
∞

−

−∞

= −∫
h

h  (80) 

Using (80), along with (75) and (76) rewrite (79) as 

 ( ) ( ) ( )( )( )2
' ' ' '( ) ,  m

k
A E k k k k k k dk

γ

π
γ γ γ γ γ γ γη γ δ δ

∞
+

+
−∞

= + − + +∫ h
 

 ( ) ( )2 ( ) , ( ) ,m
k

A E k k k k
γ

π
γ γ γ γη γ η γ+ +

+ = + + + + − − +
h

 (81) 

Next evaluate the scalar product ( )A Eψ − + .  Using (72) to expand the Møller state this 

is 

 ( ) ( ) ( )* 2
' ' ', ' ( ) , ( ) ,m

k
A E k k k k k k dk

γ

π
γ γ γ γ γ γ γψ η γ η γ η γ

∞
− + +

− +
−∞

= − + + + + − − +∫ h
 

 ( ) ( )( )* *2
' ' ' ' '( ) , ' , ( ) , ' ,m

k
k k k k k k k k dk

γ

π
γ γ γ γ γ γ γ γ γη η γ γ η η γ γ

∞
− + − +

−∞

= + − + + + − − − +∫h
 (82) 

Using the orthogonality relation from (77) this is 

 
( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1/2 '
'

'

* , '2
, ' '

* , '
' , ' ' '

( )

( )

m
k kk k

k k

A E k k S k k k k

k k S k k k k dk

γ γ
γ γ

γ γ

γ γπ
γ γ γ γ γ γ

γ γ
γ γ γ γ γ γ γ

ψ η η δ δ

η η δ δ

∞
− +

− +
−∞

− +

= + − + +

+ − − + +

∫h  
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( )
( ) ( )

( )
( )
( )

1/2 '
'

'

'

'

* , '2
,

* , '
,

* , '
,

* , '
,

( )

( )

( )

( )

m
k kk k

k k

k k

k k

A E k k S

k k S

k k S

k k S

γ γ
γ γ

γ γ

γ γ

γ γ

γ γπ
γ γ

γ γ
γ γ

γ γ
γ γ

γ γ
γ γ

ψ η η

η η

η η

η η

− +
− + − +

− +
+ +

− +
− −

− +
+ −

= − +

+ + +

+ − −

+ + − 

h

 (83) 

Recall that the expansion coefficients ( )kγη ±  simply describe the momentum 

representation of the initial wavepacket we wish to propagate.  Hence we are free to 

impose certain restrictions which will simplify eq (83).  For example, we can choose to 

select an asymptotic product state which only has positive momentum – that is, we 

impose the restriction  

 ( ) 0kγη − − =  (84) 

It is worth noting that apart from being mathematically expedient, choosing an incoming 

wavepacket with entirely positive momentum is practical [2], as instead of spreading out 

in all directions all of the wavepacket will propagate towards the interaction region we 

wish to examine.  Similarly, reactant wavepackets are chosen to have only negative 

momentum: 

 ( ) 0kγη + + =  (85) 

 Imposing the restriction from (84) onto (83) results in all but the second term on 

the right side being zero:   

 ( ) ( )
( ) ( )1/2

'

* , '2
',0 ( )m

k kk k
k A E k k S

γ γ

γ γπ
γ γ γη ψ η η± − +

− + + +− = → = + +
h

 (86) 

Alternately, by choosing appropriate combinations of the asymptotic product and/or 

reactant states containing all positive or all negative momentum, all but the first, third, or 
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fourth terms may be set to zero.  Each of these cases gives a simplified form of (83), 

which can be summarized as 

 ( )
( )

( ) ( )* , '
',1/2

'

2 ' k k
mA E k k S

k k
γ γ

γ γ

πψ η η± +
− + ± ± = ± ± 

h
 (87) 

This expression can now be inverted to solve for the on-shell S-matrix element 

 
( ) ( )

( ) ( )

1/2

''
', *2 'k k

k k A E
S

m k k
γ γγ γ

ψ

π η η
− +

± ± − +=
± ±

h
 (88) 

For its final form, use eq. (78) to write this as 

 
( ) ( )

( ) ( )

1/2 /
'

'
', *2 '

iEt

k k

k k e C t dt
S

m k k

γ γ
γ γ

π η η

∞

−∞
± ± − +=

± ±

∫ hh
 (89) 

 

where the correlation function  

 ( ) ( )C t tψ ψ− +=  (90) 

is defined between the stationary product Møller state ψ −  and the evolving reactant 

Møller state ( )tψ + .  The Fourier transform of the correlation ( )/iEte C t dt
∞

−∞
∫   is 

explicitly a function of energy.  The remaining terms are implicating functions of energy 

by the relation 

 ( )
2

2 /
HBk E Eγµ= −  (91) 

The internal energy Eγ is associated with any energy offset of the surface as well as any 

internal degrees of freedom. 
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Scattering on the B+H2 Potential Energy Surfaces 

 The effective PES for 2B H+ on which the wavepackets will be propagated are 

two-dimensional depending on r and R.  As was used in the derivation of the channel 

packet method (see for example eqs. (70) and (71)), the product and reactant wavepackets 

are chosen to be the direct product of eigenstates of the asymptotic Hamiltonian.  In the r 

dimension this is an eigenstate of the numerical potential, which must be calculated.  As 

expected from knowledge of the 2H molecule, this eigenstate will resemble the eigenstate 

of the Morse oscillator.  In the R dimension, the eigenstates are those of the free particle.  

As these are not proper wavefunctions, a linear combination is chosen, which for 

mathematical convenience will be in the form of a Gaussian. 

 Initially this wavepacket is chosen to be isolated to only one PES.  However eq. 

(43) shows that successive applications of the full Hamiltonian will mix the states, giving 

nonzero amplitudes on all PESs.  As the wavepacket is propagated forward in time, its 

correlation function with product states located on each PES may be calculated 

simultaneously, allowing for the calculation of scattering matrix elements from the 

reactant state to each of the product states with only one propagation run.   

 Propagation is facilitated by several practical considerations, which are addressed 

next. 
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Absorbing Boundary Conditions 
 
 Although the split-operator method of propagation takes advantage of the 

relatively efficient FFT algorithm, it is nonetheless desirable to limit computation time.  

This is accomplished by using the smallest practical grid. 

 As laid out in eq. (89), calculating S-matrix elements using the CPM involves 

calculating the time-dependent correlation function between reactant and product Møller 

states.  This is typically done by choosing one Møller state to evolve in time, while 

leaving the other alone.  Since the correlation function is defined over all time, from −∞

to ∞ , strictly speaking the evolving Møller state needs to be propagated over all time.  

However, the product Møller states may be selected to be localized [24], so propagation 

need only be done over the time when the correlation function is nonzero – that is, until 

the evolving Møller state has propagated sufficiently far out of the interaction region such 

that there is no significant overlap. 

 In many cases this still requires propagating for a relatively long time.  While 

waiting for the last residues of the evolving Møller state to leave the interaction region, 

the rest of the Møller state may have diffused over a large area.  Since the split-operator 

propagator uses the FFT, which operates on a finite set of points under the assumption 

that the complete data set is periodic [22], should any portion of the evolving Møller state 

reach the edge of the grid it will erroneously reappear on the other side.  It will then 

continue to propagate, potentially reentering the interaction region and introducing error 

into the correlation function.  

 Simply increasing the grid size to accommodate the evolving Møller state over the 

entire time interval necessary to calculate the correlation function will greatly increase 
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the computational effort required.  A more efficient solution is to introduce absorbing 

boundary conditions (ABCs) [24].  ABCs are nonphysical potentials that are added near 

the edge of the grid so that when evolving states approach them they are attenuated.  

ABCs are placed outside the interaction region in a location where the product Møller 

state has zero amplitude.  They must also be located so that they do no attenuate portions 

of the wavepacket which will eventually enter the region of the product Møller state.  

These rules ensure the correlation function between the product Møller state and evolving 

reactant Møller states is not affected, causing the ABC to not alter the calculation of the 

S-matrix elements. 

 Absorbing boundary conditions are imaginary-valued, such that the new potential 

takes the form 

 0
ˆ ˆ

âbcV V iV= ±  (92) 

where 0̂V  is the original potential.  Adding the ABC causes the time-evolution operator to 

become 

 
( )

( )0

ˆ /

ˆ ˆˆ / /

ˆ

abc

iH t

i t i V iV t

U t e

e

− ∆

− Τ∆ − ± ∆

∆ =

=

h

h h
 (93) 

The sign is chosen depending on whether the propagation will go forward or backward in 

time.  If t∆ is positive, the time-evolution operator will attenuate the wavepacket if âbcV is 

chosen to be negative.  If t∆ is negative, âbcV is chosen to be positive.   

 The ABC must be chosen so that it completely attenuates the wavepacket.  Its 

amplitude must be sufficient to ensure it does not transmit any of the wavepacket, and its 
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shape should be such that it does not reflect the wavepacket.  A common choice is that of 

the Gaussian – in one dimension it would take the form 

 ( ) ( )2
0 /x x B

abcV x Ae− −=  (94) 

Where A and B are chosen to meet the criteria described above.  If the Gaussian is too 

narrow, some of the incoming wavepacket will be reflected.  If it is too broad, the ABC 

may intrude into the interaction region, introducing error. 

 

Other Practical Grid Considerations 
 
 The use of absorbing boundary conditions removes the necessity of using a huge 

grid by attenuating any part of the wavepacket that propagates well away from the 

interaction region.  However there are still several practical considerations when selecting 

a grid for propagation. 

Møller States and the Asymptotic Limit  
 
 Calculating S-matrix elements using the CPM involves obtaining the time-

dependent correlation function between the reactant and product Møller states.  Logically 

the first step in this process is to calculate the Møller states.  Judicious selection of the 

initial states can greatly simplify this step, and will play a small role in grid selection. 

 The Møller states are defined (see eq. (58) along with the definition of the Møller 

operators in eqs. (55) and (56)) by propagating the reactant (product) state backwards 

(forwards) in time to t = ∞m under the asymptotic Hamiltonian 0Ĥ , then forwards 

(backwards) to 0t = under the full Hamiltonian Ĥ .  It is straightforward to perform these 

propagations using the split-operator propagator.  However the required computation 
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time (and the small but theoretically nonzero error associated with the propagator) may 

be avoided entirely by defining the initial states to already be in the asymptotic limit.  

This choice means that during the propagation 0
ˆ ˆH H= and the Møller operators are the 

identity operator, and the Møller states are simply the initial product and reactant states. 

 As previously stated, it is desirable to limit the size of the coordinate grid in order 

to reduce the computation time required.  Of course it is necessary to make the grid big 

enough to ‘fit the problem on’.  Practically speaking this means it must extend far enough 

from the interaction region to allow the product and reactant states to be defined in the 

asymptotic limit.  The grid is further extended beyond this point in order to add absorbing 

boundary conditions, which must be located where the non-evolving Møller state has 

zero amplitude in order to not interfere with the calculation of the correlation function. 

Fourier Transform Pairs: The Coordinate and Momentum Grids 
 
 For each dimension the coordinate (and momentum) grid are completely specified 

by any two of the following parameters (for each dimension of the propagation space): 

the range ( )max minx x− , the interval between adjacent points ( )x∆ , and the total number of 

gridpoints ( )xN .  Given any two, the third parameter is simply calculated by some form 

of the equation 

 max min

1x

x xx
N

−
∆ =

−
 (95) 

The choice of which parameters to specify is arbitrary, although for practical 

considerations directly specifying the range is often advantageous.  Although it may seem 

more natural to specify the interval x∆ and let this determine the number of points, 
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frequent use of the FFT algorithm means it will be advantageous to have xN be a power 

of 2 [22].  Thus xN is often the second parameter specified. 

 As seen by eq. (52), the coordinate and momentum grids are related by the 

Fourier transform.  Therefore when selecting the coordinate grid, the momentum grid is 

defined as well.  The relation between the two is given by [22] 

 
max min

2k
x x

π
∆ =

−
 (96) 

The number of points in the momentum grid is of course the same as the number of 

points in the coordinate grid. 

 k xN N=  (97) 

These two parameters completely specify the momentum grid.  The range of momentum 

is calculated from k∆  and kN along with knowledge that the momentum grid will be 

centered around zero: 

 max/min 2
kN kk ∆

= ±  (98) 

This gives another piece to consider when selecting the grid.  Since the range of 

momentum is never directly chosen and is instead determined by the fineness of the 

coordinate grid, care should be taken to ensure that during the propagation the 

wavepacket never reaches momentum values greater than that given by eq. (98).  As 

previously discussed, the FFT assumes periodicity, and similar to the case of the 

wavepacket going off the grid in the coordinate representation which motivated use of 

absorbing boundary conditions, the wavepacket can go off the grid in the momentum 

representation introducing error into the propagation.  In the case of the coordinate grid, 
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the localized nature of the product states meant portions of the wavepacket reaching the 

edge of the grid were no longer relevant to the calculation of the correlation function 

between the Møller states, and thus could be attenuated by employing absorbing 

boundary conditions.  No equivalent argument exists to allow us attenuation in the 

momentum representation and the momentum grid simply must be large enough to 

contain the evolving wavepacket. 

Fourier Transform Pairs: The Energy and Time Grids 
  
 Besides transforming between the coordinate and momentum representations of 

the wavepacket for use in the split-operator propagator, another use of the Fourier 

transform is encountered when calculating S-matrix elements using the channel packet 

method.  That is the Fourier transform of the time-dependent correlation function (eq. 

(90)), which maps the correlation function, as a function of time, to the S-matrix 

elements, which are functions of energy.  Thus time and energy are Fourier transform 

pairs, and share the same relationship as the coordinate/momentum pairs: 

 
max min

2E
t t

π
∆ =

−
 (99) 

 As previously discussed, the correlation function is defined over all time but is 

only nonzero when the Møller states overlap significantly.  The time when the correlation 

function is nonzero determines the propagation time range ( )max mint t− .  If the initial 

reactant and product states are chosen to be located in the asymptotic limit, by definition 

the correlation function is zero at that time and all of the overlap between the fixed and 

evolving Møller state lies in the future.  In that case min 0t =  and maxt  must be sufficiently 
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large to capture all overlap between the evolving states.  That is, propagation continues 

until the correlation function goes to zero. 

 Care should be taken to not truncate the correlation function prematurely.  It is not 

uncommon to encounter long, low-amplitude correlations as residuals of the evolving 

wavepacket oscillate in the interaction region.  Although small in magnitude they recur 

over a long period of time, so they contribute significantly to the integral over all time. 

 The time range is therefore determined by the requirement to capture the 

correlation function all times when it is nonzero.  The other piece needing to be specified 

is either the time step t∆ or, equivalently, the number of points tN .  Since the accuracy of 

the split-operator depends on the smallness of t∆ (see eq. (47)), the time step is often the 

parameter selected.  The time range and time step completely specify the energy grid as 

given by eq. (99) along with  

 E tN N=  (100) 

and knowledge that the energy grid will be centered around zero. 

 If the time range ( )max mint t− is fixed by the requirement to capture all of the 

overlap between the fixed and evolving Møller state and t∆ is made successively smaller 

in the interest of greater accuracy of propagation, the energy grid is made successively 

larger.  It may be the case that the requirement of the split-operator propagator for a small 

t∆ will result in the energy grid being much larger than necessary.  In that case, the 

correlation function may be downsampled before undergoing the Fourier transform when 

calculating S-matrix elements.  Equivalently, the correlation function need not be 

calculated at every propagation time step. 
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III. Results and Discussion 

 

The B+H2 Effective Potential Energy Surfaces 
  

Obtaining the Surfaces 
 
The diabatic effective potential energy surfaces ( ) , '

,D
effV r R

γ γ
as given by eq. (42) are 

calculated by Fortran code developed by Garvin [1].  The first part of this work was to 

create a shell script to interact with that existing software to facilitate specifying a 

coordinate grid and basis size n and to save the resulting surfaces in a usable format.  

First diabatic surfaces as a function of r and R are calculated for every element in the 

n n×  diabatic effective potential energy matrix.  At every point on the coordinate grid 

this matrix is diagonalized.  The resulting diagonal elements form the n adiabatic 

potential energy surfaces ( ),A
effV r R

γ
 which are saved along with the diabatic-to-adiabatic 

transformation ( ),ADU r R  which diagonalized the potential matrix at that point. 

The Diabatic Surfaces 

A representative selection of diabatic effective PESs ( )
' '
, , ,
' '

a aD
eff

j j j j
V r R

k kω ω
 are 

shown here for several values of , , ,aj k j ω .  Both diagonal surfaces and nondiagonal 

coupling surfaces are considered. 

 The ground state surface ( )
1 1
2 2
1 1
2 2

0 0
, , ,

0 0
D

effV r R  quickly resolves to the asymptotic 

2H  potential as R increases.   
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Figure 5.  Diabatic Effective Potential Energy Surface ( )
1 1
2 2
1 1
2 2

0 0
, , ,

0 0
D

effV r R  
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Contours are shown for values from 0 to 0.27 au, with lines every 0.01 au.  The 

process of expanding the numerical surfaces in a truncated basis results in nonphysical 

features at energies greater than 0.27 au.  Since this energy is much higher than those 

accessible in the collision considered the surfaces have been truncated at 0.27 au.  As a 

result in certain regions, for example the region 3 aur < , 2 auR < in this plot, contour 

hatching is visible where the surface has a constant value. 

 

Figure 6.  Diabatic Effective Potential Energy Surface ( )
1 1
2 2
1 1
2 2

0 0
, , ,

0 0
D

effV r R  Contour Plot 
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 The excited surface ( )
3 3
2 2
1 1
2 2

2 2
, , ,

0 0
D

effV r R  is qualitatively similar to the ground 

state.  It primarily differs in the region of larger r, and the asymptotic 2H  potential has 

been raised in energy and slightly broadened due to the ( )
2

2

2

1
2 H

j j
rµ
+h

 term in the 

Hamiltonian. 

 

 

Figure 7.  Diabatic Effective Potential Energy Surface ( )
3 3
2 2
1 1
2 2

2 2
, , ,

0 0
D

effV r R  
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Contours are shown for values from 0 to 0.27 au, with lines every 0.01 au. 
 
 

 

Figure 8.  Diabatic Effective Potential Energy Surface ( )
3 3
2 2
1 1
2 2

2 2
, , ,

0 0
D

effV r R  Contour Plot 
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Off-diagonal terms in the diabatic effective potential energy matrix represent coupling 

surfaces. A selection of them are shown here. 

 

 

Figure 9.  The Coupling Surface ( )
31

2 2
1 1
2 2

0 0
, , ,

0 0
D

effV r R  

 
 
 The coupling surface is near zero for the region 6 auR > .  This indicates that a 

wavepacket initially located on the ground state 
1
2
1
2

0
,

0
 will couple only very weakly to 

the state 
3
2
1
2

0
,

0
 in this region.    
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Contours are shown from -0.12 au to .02 au with lines every 0.005 au.  Contour line 

hatching is again visible in regions where the surface has a constant value. 

 

Figure 10.  The Coupling Surface ( )
31

2 2
1 1
2 2

0 0
, , ,

0 0
D

effV r R  Contour Plot 
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Figure 11.  The Coupling Surface ( )
3 1

22
11
22

0 1
, , ,

0 1
D

effV r R
−
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Contours are shown from -0.01 au to 0.025 au with lines every 0.001 au. 

 

Figure 12.  The Coupling Surface ( )
3 1

22
11
22

0 1
, , ,

0 1
D

effV r R
−

 Contour Plot 
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The Adiabatic Surfaces 

 While the diabatic surfaces are calculated directly from eq. (42), the adiabatic 

surfaces are obtained by diagonalizing the diabatic effective potential energy matrix at 

every point on the coordinate grid.  This results in several key differences between the 

diabatic and the adiabatic surfaces.  Unlike the diabatic surfaces the adiabatic surfaces 

change as a function of the basis size n – while increasing n simply results in more 

diabatic surfaces, the adiabatic surfaces change as the transformation mixes in the 

additional diabatic surfaces.  Additionally there is no clear labeling scheme as each 

adiabatic surface is a mixture of diabatic states with varying aj j
k

γ
ω

=  basis states.  

Often they are ordered by increasing energy as this is a common scheme for sorting 

eigenvalues used by diagonalization algorithms.  In fact this ordering is arbitrary, and it is 

sufficient that the adiabatic potential energy matrix be diagonal at each point on the 

coordinate grid and that the unitary transformation that diagonalized the matrix at that 

particular point is known.  
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 The following series of figures shows how the first (lowest) adiabatic surface 

changes as the basis size is increased.  Contours are shown from 0 to 0.27 au with lines 

every 0.01 au.

 

Figure 13.  First Adiabatic Surface with Basis Size 2n =  Contour Plot 
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Figure 14.  First Adiabatic Surface with Basis Size 8n =  Contour Plot 
 

 
The most interesting change here is the height of the surface in the region around 

3 au, 2.5 auR r= = .  This indicates the potential energy that must be overcome in order 

to access the region of low energy in the upper right corner.  This area represents the 

reaction 2B H BH H+ → + .  As the basis size increase this barrier to reaction decreases. 
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Figure 15.  First Adiabatic Surface with Basis Size 14n =  Contour Plot 
 
 

Although the surface does change slightly the addition of states higher than 4j = , 

which corresponds to a basis size 14n = , these additions do not appreciably decrease the 

barrier.  Contour plots of this surface with basis sizes 20,  26n =  appear nearly identical.   
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Figure 16.  First Adiabatic Surface with Basis Size 20n =  Contour Plot 

 

 

Figure 17.  First Adiabatic Surface with Basis Size 26n =  Contour Plot 
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 Finally consider the lowest adiabatic potential energy surfaces calculated with a 

basis size 32n = .  This is the basis size used in this work.   

 

Figure 18.  First Adiabatic Surface with Basis Size 32n =  Contour Plot 
 

 

Asymptotic Eigenstates 

 In preparation for propagating on these surfaces eigenstates of the asymptotic 

Hamiltonian need to be prepared.  In the limit of large R the diagonal diabatic potential 

energy surfaces as given by eq. (42) become  
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 ( ) ( )
2

2

2

1
2

a aD
eff H el so off

H

j j j j j j
V V r E E E

k k rω ω µ
+

= + + + +  (101) 

The energy offset is chosen to be  

 ( )
2off el H eqE E V r= − −  (102) 

placing the zero of the energy between the spin-orbit split 0j = states at the minimum of 

the ( )
2HV r  potential.   

In the asymptotic limit the R cross-section of the surfaces follow the 2H  rotor 

spectrum with each level being split by spin-orbit coupling. 

 

 

Figure 19.  Diabatic Potential Energy Surfaces Cross-section at eqr  

 

The asymptotic potential in the R dimension is that of the free particle.  When 

selecting a wavepacket for propagation any normalizable superposition of plane waves is 

appropriate.  For convenience a Gaussian is chosen.   
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 In the asymptotic limit the cross-section of the 0j =  surface should be the 

( )
2HV r  potential.  When compared to the ( )

2HV r  potential of Liu-Siegbahn-Truhlar-

Horowitz [25] [26] (LSTH), it was noted that although there was good agreement at the 

points included in the original ab initio calculation, the interpolation between those points 

differed to some degree.  By supplying the interpolation routine with additional points 

from the LSTH potential, this discrepancy was resolved as shown in the following figure. 

 

Figure 20.  Correction to Asymptotic 2H  Potential 

 
 
 
The cross-sections for values of j higher than 0 are offset by the appropriate rotor 

and spin orbit energies, and the shape is slightly changed by the presence of the 
( )

2

2

1
2 H

j j
rµ

+
 

term. 
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Figure 21.  Cross-sections of the Diabatic PESs for 0,2,4j = at Limit of Large R 
 

 

 

Figure 22.  Detail of Diabatic PES Cross-sections for 0,2,4j =  Around 1.402 aur = Showing Spin-Orbit 
Splitting 
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 Unlike the case in the R-direction, the eigenstates in the r-direction must be 

determined numerically.  This is done by expanding in a basis of the eigenstates of the 

simple harmonic oscillator. 

 In the asymptotic limit and at some fixed R the Hamiltonian is given by  

 
2

2ˆˆ ˆ ˆ
2

r
a r r

H

pH T V V
µ

= + = +  (103) 

where rV is a the numerical cross-section of diabatic potential energy surface 

 
( ) ( )

2

2

2

1ˆ
2

D
eff H so

H

j j
V V r E

r
γ γ

µ
+

= + +  

The kinetic energy operator is the same as in the Hamiltonian for the simple harmonic 

oscillator, so we can write the Hamiltonian as 

 ( )ˆ ˆ ˆ ˆ ˆ ˆ
a r sho sho rH T V H V V= + = − +  

Where ˆ
shoH is the Hamiltonian of the simple harmonic oscillator 

 ( )
2 2

2 22 2ˆ ˆ1 1ˆ ˆ ˆ
2 2 2 2

r r
sho eq

H H

p pH k r r kx
µ µ

= + − = +  

The eigenstates of the simple harmonic oscillator are the number states n  described by 

the eigenvalue equation ( )ˆ 1/ 2shoH n w n n= + .  These eigenstates have the 

coordinate representation 

 ( ) ( ) ( )
( )1 2

2
22 !

xn
n nx n x n x e

β

ψ π β
−−

= =   

where 2

2

, H

H

kµ ω
β ω

µ
= =


 and n  are the Hermite polynomials. 
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The treatment of the harmonic oscillator eigenstates is facilitated by defining the 

raising and lowering operators â and â†  

 ˆ ˆˆ ˆ ˆ ˆ             
2 2

p pa x i a x i
m m

β β
ω ω

   = + = −   
   

†  

which operate on the eigenstates to give  

ˆ ˆ1           1 1a n n n a n n n= − = + +†  

The raising and lower operators are related to the coordinate operator by 

 ˆ ˆˆ
2

a ax
β

+
=

†

 

 The eigenstates of the simple harmonic oscillator are complete.  Representing ˆ
aH  

in this basis gives 

 

( )

( )

2

2
'

ˆ ˆ ˆ ˆ' '

1ˆ ˆˆ' ' '
2

1 1 ˆˆ ˆ' '
2 2 2

a sho r sho

sho r

n n r

n H n n H V V n

n H n k n x n n V n

kn n a a n n V nω δ
β

= + −

= − +

 = + − + + 
 

 †

 

The raising and lowering operators satisfy the relation ˆˆ ˆ ˆ ˆaa a a I− =† †  where Î is the 

identity operator. 

 

'
1ˆ'
2

1 ˆ ˆ ˆ ˆ ˆ ˆ' 2 ' ' '
2 2

ˆ'

a n n

r

n H n n

k n a a n n a a n n n n aa n

n V n

ω δ

β

 = + 
 

−  + + +  

+



† † †  

Moving into the coordinate representation gives 



69 
 

 

( )

( ) ( ) ( )

( ) ( )

'

1/2 1/2 1/21/2
' 2 ' 2

*
'

1 1ˆ' 1 2
2 2 2

1 1 2 1
2 2

a n n

n n n n

n r n

kn H n n n

k n n n n

x V x dx

ω δ
β

δ δ
β

ψ ψ

+ −

  = + − +  
  

 − + + + − 

+∫
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which gives a method for numerically determining each matrix element ˆ' an H n .  This 

result is exact if an infinite number of basis states are used.  In practice the basis must be 

truncated.  The result is an m x m matrix ˆ' an H n , where m is the number of basis 

states used.  This matrix is then diagonalized and the resulting diagonal elements are the 

eigenvalues of the system while the columns of the unitary transformation matrix used to 

diagonalize it give the expansion coefficients of its eigenvectors in the chosen basis.  

These eigenvectors are labeled ( )2

1

HV rγφ , where i indexes the surface 

 This work will consider energies on the order of the ground and first excited 

vibrational state.  The first two eigenvalues and their associated eigenvectors were 

calculated for the asymptotic limit of large R for every potential energy surface 

corresponding to a diagonal element of the effective potential energy matrix.  These 

eigenstates were observed to converge when more than 10 basis states of the harmonic 

oscillator are used to represent the Hamiltonian.  To guarantee convergence 40 basis 

states were used for the calculation. 
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 The ground and first excited state are shown for the cross-section of the ground-

state potential energy surface ( )
1 1
2 2
1 1
2 2

0 0ˆ , 30 au
0 0

D
effV r R = . 

 

 

Figure 23.  Cross-section of First Diabatic PES with First Two Vibrational Eigenstates 
 

 

To facilitate propagation on a specific grid the numerically determined eigenstates 

( )2H

i

V rγφ  are sampled at the gridpoints used for the propagation. 

The numerically determined eigenvalues are precisely the internal energies 

referenced in equation (91).  They incorporate the offset of each surface from zero in the 

asymptotic limit as well as the energy associated with the internal vibrational degree of 
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freedom.  These numerically determined total internal energies are shown in Table 1 for 

various values of aj j
k

γ
ω

=  and v . 

 

Table 1.  Summary of Internal Energies 
 

 

γ  

v  

1
2
1
2

0
0

 
3
2
1
2

0
0

 
1
2
1
2

2
0

 
3
2
1
2

2
0

 
1
2
1
2

4
0

 
3
2
1
2

4
0

 

0v =  0.9884 0.9957 1.1499 1.1573 1.5212 1.5287 

1v =  2.8848 2.8922 3.0383 3.0457 3.3911 3.3984 

intE  are in 210  au− . 

γ  

v  

1
2
1
2

6
0

 
3
2
1
2

6
0

 
1
2
1
2

8
0

 
3
2
1
2

8
0

 
1
2
1
2

10
0

 
3
2
1
2

10
0

 

0v =  2.0895 2.0969 2.8360 2.8433 3.7384 3.7458 

1v =  3.9305 3.9379 4.6388 4.6461 5.4944 5.5017 

 

 

Since the internal energies incorporate the total energy offset as well as the energy 

of the internal degrees of freedom they represent the minimum energy required to access 

those states.  They therefore provide a useful guide for determining maxj  in order to 

truncate the effective potential energy matrix.  In this work max 10j =  is used, giving a 

basis size 32n = .   
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Propagation 
 

The Initial Wavepacket 
 

In preparation for propagation the initial wavepacket is prepared in the diabatic 

coordinate representation.  The selection of max 10j =  means the wavepacket is 

represented by a 32 1×  vector.  This work investigates scattering matrix elements from 

the state 
1
2
1
2

0
0

γ = , which will subsequently be referred to as the ground state.  The 

initial wavepacket is defined to have amplitude only on this surface.   

 ( )

( )
1

,

0,

0

D
in

D
in

r R

r R

γ
ψ

ψ

 
 
 =  
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On the ground state the initial wavepacket ( )
1

,D
in r R

γ
ψ  is selected to be an 

eigenstate of the asymptotic Hamiltonian.  As previously discussed, this wavepacket is 

formed from the direct product of a Gaussian in the R-direction and the ground state of 

the asymptotic 
2HV potential in the r-direction: 

 ( ) ( ) ( ) ( ) ( )2 2
0 0 02

11

1/4 /42, 2
in

HV R R ik R RD
in r R r e δ

γγ
ψ φ πδ

− − − + −= ⋅  (106) 

An initial offset 0 30 auR = is selected to place the wavepacket in the asymptotic limit 

along with a spread parameter 0.35δ =  and momentum offset 0 6.75ink = − .  



73 
 

 

Figure 24.  Initial Wavepacket on the Ground State at 0t = au 
 

The Møller states 
 

 Since the wavepacket is located in the asymptotic limit, it is also the reactant 

Møller state. 

 1 1
in in
γ γψ ψ ψ− −= Ω =  
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The product Møller states are selected to have the same form in the R-dimension but with 

a momentum offset 0 0 6.75out ink k= − = + .  As with the reactant Møller states, their location 

in the asymptotic limit eliminates the need to numerically propagate these states forwards 

and backwards in time.  Two product Møller states are defined for every surface, one 

with an r-dimension cross-section of the vibrational ground state and another with a 

cross-section of the first excited vibrational state.   

 The width of the momentum representation of the Møller states will determine the 

range of energies considered by the propagation.  Consider again the equation for 

calculating scattering matrix elements using the channel packet method: 

 
( ) ( )

( ) ( )

1/2 /
'

'
', *2 '

iEt

k k

k k e C t dt
S

m k k

γ γ
γ γ

π η η

∞

−∞
± ± − +=

± ±

∫ hh
 (107) 

Here all terms are shown explicitly as functions of energy.  The denominator contains the 

expansion coefficients η ± of the momentum representation of the Møller states in the R-

dimension.  Since they were chosen to be a Gaussian in the coordinate representation, 

these expansion coefficients are known – they are simply given by the inverse Fourier 

transform of the coordinate Gaussian, which is known analytically: 

 ( ) ( )22 /
0 0

1/422 out ink k iR kk e δδη
π

− − −±  
=  

 
 (108) 

To see the range of energies contained in these states the η ±  are expressed as a function 

of energy using the relation ( )
2 int2 /

HBk E Eµ= − . 
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Figure 25. RP  Cross-section of Initial Wavepacket 

 
 
 
This range of energies is selected to be broad but contained below the cutoff energy 

associated with the truncation of the potential energy matrix at max 10j = .   

 Another consideration when selecting these paramaters is the requirement derived 

from the channel packet method that the wavepacket momentum be either all positive or 

all negative.  This requirement must be balanced against the desire to obtain usable data 

at low energies.  The division by  ( )( ) ( )( )* 'k E k Eη η− +± ±  in eq. (107) results in 

division by near-zero noise at the edge of the Gaussian.  It is therefore desirable to locate 

the Gaussian such that is has a non-negligable amplitude at int0k E E= → = .  

The Reaction Channel 
 

 While the selected wavepacket only has energies less than those associated with 

the 12j = states, it does contain energies higher than the barrier to reaction seen in the 

lowest adiabatic potential energy surface:  
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Figure 26.  Barrier to Reaction in Lowest Adiabatic Potential Energy Surface 
 
 
 
The initial wavepacket is centered at 1.402 au, 30 aur R= =  and is moving entirely in 

the R−  direction.  As it enters the interaction region portions of the wavepacket with 

energies higher than 0.025 au  can move into the region of low potential around 

2.5 au, 2 aur R> <  and exit the grid.  Crossing into this region represents the reaction 

2B H BH H+ → + .  Propagation on the BH H+ surfaces is beyond the scope of this 

work, so the simplifying assumption that any wavepacket exiting in that direction will 

completely react is required.  The investigation of whether portions of the wavepacket 

can cross onto the BH H+ surfaces and subsequently return and exit the grid along the 

original reaction channel represents an opportunity for further studies.  That study would 

require the formulation of the BH H+ effective potential energy surfaces. 
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Absorbing Boundary Conditions 
 

 The assumption that the portions of the wavepacket that cross the barrier will 

entirely exit is implimented through the use of absorbing boundary conditions.  Without 

the use of absorbing boundary conditions any portion of the wavepacket leaving the grid 

would erroneously appear on the opposite side due to the FFT’s assumption of 

periodicity, reflect, and return to the interaction region by an unphysical mechanism.  To 

prevent this an ABC is located in the region 3 aur > .  The shape of the ABC is a 

Gaussian 

 ( )
( )2

max

1
,1 1,

r r
B

abcV r R iA e
−

−

= −  (109) 

with parameters 1 10.025,  1/ 3A B= = . 

 With this choice of parameters the ABC will only absorb portions of the 

wavepacket which are reacting.  These ABCs are made relatively wide to prevent 

reflection while completely absorbing anything entering the reaction region. 

 Another ABC is located at the edge of the grid at large R.  The majority of the 

wavepacket will not react and will exit the interaction region along this channel.  This 

ABC prevents portions of the wavepacket exiting in this channel from crossing back to 

0R = , reflecting off the potential there, and reentering the interaction region.  This ABC 

is a broader, shallower Gaussian compared to ,1abcV  with the form 

 ( )
( )2

max

2
,2 2,

R R
B

abcV r R iA e
−

−

= −  (110) 

 with the parameters 2 10.005,  20A B= = . 
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The Time Grid 
 

 An investigation of the propagation on these surfaces concluded that error 

associated with the split-operator approximation converged to zero around a time step of 

1.5 auct∆ = .  For these calculations this time step was chosen to be 1aut∆ = .  The total 

propagation time of 6
max 4 10T = × was chosen to ensure all of the wavepacket exited the 

interaction region.  This long propagation time is necessary to capture the entire period 

where the correlation function is nonzero. 
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 A summary of the propagation parameters is shown in Table 2. 

 

Table 2. Propagation Parameters 
 

Parameter Symbol Value (au) 

Coordinate gridsize R

r

N
N

 
256
32

 

Coordinate grid range min max

min max

,
,

r r
R R

 
0.6702,  4.402

0,  50
 

Time step size t∆  1 

Total propagation time maxT  64 10×  

Initial wavepacket position 0 0,r R  1.402,  30  

Initial wavepacket momentum /
0
in outk  6.75  

Initial wavepacket spread δ  0.35 

Amplitude, spread of ABC 1 1 1,A B  0.025,  1/3  

Amplitude, spread of ABC 2 2 2,A B  0.005, 20  

Masses 
2 2, ,B H Hµ µ  3109.0,918.6 

 

Propagation 
 

 Now all the pieces are in place to propagate on these surfaces.  Having defined the 

initial wavepacket on the ground state 
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 ( )

( )
1

,

0, , 0

0

D
in

D
in

r R

r R t

γ
ψ

ψ

 
 
 = =  
 
  


 

the correlation function between the wavepacket and each of the 64 (32 surfaces with 

0,1v = ) product Møller states.  This gives the correlation functions at time 0t = .   

To begin the propagation algorithm the diabatic-to-adiabatic transformtion 

( )†

,ADU r R  is applied.  At every point on the coordiante grid 
†

ADU  is a 32 x 32 matrix, 

which is multiplied by the 32 x 1 diabatic wavepacket giving the adiabatic wavepacket  at 

every point  

( )
( )

( )

1
,

,
,

n

A

A

A

r R

r R
r R

γ

γ

ψ

ψ
ψ

 
 

=  
 
  

 . 

This is then multiplied by the first of the potential energy operators, /2A
effiV te− ∆   which is 

diagonal in this representation.  This intermediate wavepacket is then transformed back 

into the diabatic representation.  Next it is moved into the momentum representation by 

taking the two-dimensional Fourier transform of each of its 32 rows ( ),
i

A r R
γ

ψ .  In the 

diabatic momentum representation the kinetic energy operator is diagonal. 

 ( )

( )

( )

2 2
,2 2

2 2
,2 2

/2 /2

ˆ /

/2 /2

,
0

0

r H R B H

r H R B H

i k k t

iT t
r R

i k k t

e
e k k

e

µ µ

µ µ

− + ∆

− ∆

− + ∆

  
  
  =
  
    







  

After transforming back to the adiabatic coordinate representation the second potential 

energy operator is applied in the same way, giving the evolved wavepacket at the next 
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time step in the adiabatic representation.  This is transformed to the diabatic 

representation giving ( ), ,D r R t tψ = ∆ .  The correlation functions between this evolved 

wavepacket and each of the product Møller states is calculated for t t= ∆ .  This process is 

iterated for the desired number of time steps. 

Visualizing the Propagation 
 

 The wavepacket is defined to be located only on the ground state at 0t = .  The 

off-diagonal elements of the diabatic effective potential energy matrix have the effect of 

mixing the wavepacket onto the other surfaces.  This process is shown considering the 

wavepacket’s evolution on ground state diabatic surface ( )
1 1
2 2
1 1
2 2

0 0
,

0 0
D

effV r R  and the 

next higher surface ( )
3 3
2 2
1 1
2 2

0 0
,

0 0
D

effV r R  associated with the boron electronic fine 

structure transition.  At every time point shown the correlation function between the 

evolving reactant state and the stationary product Møller state (located at 30 auR = with 

momentum in the positive R direction) is shown from time 0 aut = up to the time being 

considered.  The product Møller states are represented by a single black contour.    
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 At 0t =  the wavepacket is placed in the asymptotic limit and is located only on 

the ground state.  The initial correlation is zero because the wavepacket has only negative 

momentum while the product Møller state has only positive momentum. 

 

Figure 27.  Wavepacket on the First Two Surfaces at 0 aut =  
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 At 5000 aut = the wavepacket has moved towards the interaction region.  No 

significant coupling to higher surfaces or correlation with the product Møller states is 

seen. 

 

Figure 28.  Wavepacket on the First Two Surfaces at 5000 aut =  
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 At 12500 aut = the wavepacket has entered the interaction region and has coupled 

to the higher surfaces. 

  

Figure 29.  Wavepacket on the First Two Surfaces at 12500 aut =  
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 For 20000 45000 aut = −  the wavepacket is exiting the interaction region on all 

of the surfaces.  A significant portion is located in the region of the product Møller states 

resulting in the most significant amplitude in the correlation functions.   

 

Figure 30.  Wavepacket on the First Two Surfaces at 20000 aut =  
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Figure 31.  Wavepacket on the First Two Surfaces at 27500 aut =  
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Figure 32.  Wavepacket on the First Two Surfaces at 35000 aut =  
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Figure 33.  Wavepacket on the First Two Surfaces at 42500 aut =  
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At 50000 aut = most of the wavepacket has passed by the product Møller states 

and the correlation function returns to low amplitude.   

 

Figure 34.  Wavepacket on the First Two Surfaces at 50000 aut =  
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At 65000 aut =  the wavepacket is no longer visible on this scale.  However the 

remaining low-amplitude long-duration features of correlation function play an important 

part in forming the scattering matrix elements. 

 

Figure 35.  Wavepacket on the First Two Surfaces at 65000 aut =  
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The Scattering Matrix Elements 

Calculating the Scattering Matrix Elements 
 

 The correlation functions between the product Møller states and the evolving 

reactant Møller states is used to calculate the scattering matrix elements using the relation 

 ( )
( ) ( )

( ) ( )

1/2 /
'

'
', *2 '

iEt

k k

k k e C t dt
S E

m k k

γ γ
γ γ

π η η

∞

−∞
± ± − +=

± ±

∫ hh
 

First the Fourier transform of each correlation function is taken.  These are multiplied by 

the appropriate prefactor according to the expansion coefficients of the respective 

reactant and product Møller states, ( ) ( )22 /
0 0

1/422 out in
R Rk k iR k

Rk e δδη
π

− − −±  
=  

 
.  These are 

implicitly functions of energy using the relation ( )
2 int2 /

HBk E Eµ= −  where the 

internal energies were calculated numerically and are summarized in Table 1. 

The Scattering Matrix Elements for B+H2 
 

 The scattering matrix elements represent probability amplitudes for scattering to a 

given state.  Here they represent transitions from the ground state 
1
2
1
2

0
, ,0

0
aj j

v
k ω

=  

to each of the ,aj j
v

k ω
 states.  The probability of these transitions is shown by the 

amplitude squared of the scattering matrix element and are obtained as a function of 

energy. 
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Figure 36.  Probability to Transition from 
1
2
1
2

0
,0

0
 to 

1
2
1
2

0
,0

0
and 

3
2
1
2

0
,0

0
 

 
 
 

 

Figure 37.  Probability to Transition from 
1
2
1
2

0
,0

0
 to the Six Allowed

2
,0aj

j ω
 States 
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Figure 38.  Probability to Transition from 
1
2
1
2

0
,0

0
 to the Six Allowed

4
,0aj

j ω
 States 

 
 

 

Figure 39.  Probability to Transition from 
1
2
1
2

0
,0

0
 to the Six Allowed

6
,0aj

j ω
 States 
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Figure 40.  Probability to Transition from 
1
2
1
2

0
,0

0
 to the Six Allowed

8
,0aj

j ω
 States 

 

 

Figure 41.  Probability to Transition from 
1
2
1
2

0
,0

0
 to the Six Allowed

10
,0aj

j ω
 States 

 

 These scattering matrix elements are qualitatively similar to previous calculations 

using a one dimensional propagator with the restriction eqr r= , with broad Stueckelberg-

type [27] oscillatory behavior as a function of energy, along with high-frequency 
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Feshbach resonances [28] corresponding to portions of the wavepacket which couple to 

higher energy surface and become trapped in quasi-stable states.  These Feshbach 

resonances are the primary driver for the long total propagation time, and are discussed in 

greater detail in a subsequent section. 

Convergence of Basis Size 
 

 The effective diabatic potential energy matrix is infinite in dimension.  Energetic 

considerations motivated the truncation of this matrix at some maxj .  For this work maxj is 

chosen to be 10, giving a basis size max2 3 32n j= + = .  Repeating the calculation of the 

scattering matrix elements for bases of increasing size demonstrates that this truncation is 

appropriate over specific energy ranges. 

 Consider the scattering matrix element for a wavepacket entering and leaving on 

the ground state.  This case is often referred to as reflection.  The probability for 

reflection as a function of energy is shown for calculations using max 0, 2, 4,6,8,10j = , 

which result in basis sizes 2,8,14,20,26,32n =  respectively. 
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Figure 42.  Comparison of Reflection Probability for max 0, 2, 4,6,8,10j =   

 

 
 The energy 0.009883 au represents the internal energy of the ground state, which 

will serve as a constant offset from zero.  The first line to diverge is that of the 

calculation using max 0j = .  As expected this occurs near the energy where the j = 2 states 

become accessible.  As energy increases calculations based on lower numbers of basis 

states diverge indicating the energy range over which they are valid has been exceeded.  

At no point in this range do the max 8j = values diverge from the max 10j = values, 

indicating that the calculation has converged over this energy range.   

 Examination of the scattering matrix elements for the fine-structure transition to 

the 
3
2
1
1

0
0

 state gives the same conclusion. 
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Figure 43.  Comparison of Fine Structure Probability for max 0, 2, 4,6,8,10j =   

 

Sum of Reaction Probabilities 
 

 To the extent that all possible reactions have been accounted for the sum of the 

amplitude squared of all scattering matrix elements should be 1.  This is a useful check 

for consistency and may be used as a diagnostic tool to check for convergence based on 

time step size and total propagation time.  Prematurely stopping the propagation truncates 

the correlation functions, and their Fourier transform, and subsquently the scattering 

matrix elements, will exibit ringing.  Selection of an inappropriatly large time step 

introduces an erroneous phase shift in the correlation funtion.  This results in a translation 

occuring to the Fourier transform.  While this shift may not be noticible when examing 

individual scattering matrix elements, the requirement that they sum to unity makes it 

apparent.  The equation for the scattering matrix elements  

( )
( )

( )( ) ( )( )
2

2

', *

( )

2 '
H

iEt

k k
B

k E e t dt
S E

k E k E

ψ ψ

πµ η η

∞

− +
−∞

± ± − +=
± ±

∫
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involves dividing the curve associated with the Fourier transform of the correlation 

function by the product of two Gaussians, so it is sensitive to translation of the numerator 

with respect to the denominator – instead of summing to one the scattering matrix 

elements will curve through it. 

 The sum of the scattering matrix elements for this calculation is shown in Figure 

44.   

 

 

Figure 44.  Sum of Scattering Matrix Elements 
 
 
 High frequency oscillations are visible at the internal energy of the ground state 

0jE = associated with division by near-zero error where the Gaussian in the denominator of 

eq. XX has reached a very small value.  This situation is repeated at energies for the 

higher states 2jE = and 4jE = .  Otherwise the sum is equal to one up to a threshold energy 
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associated with the wavepacket overcoming the barrier to reaction and being attenuated 

by the absorbing boundary condition.  Since this work does not consider the BH H+

surfaces, it is not possible to create a product Møller state associated with reaction, which 

necessitates use of ABCs resulting in loss of probability represented in the final sum.  

Under the assumption that all of the wavepacket that enters the reaction well will react, 

the deviation of this sum from one represents the probability for reaction. 

 

 

Figure 45.  Probability to React to Form BH+H 

 
  

This analysis allows for the prediction that reaction to BH H+ will begin to occur 

with a minimum energy of 0.022 au. 

Vibrational Transitions 
  

 As expected transitions to higher vibrational eigenstates are not available for 

energies less than the total internal energies associated with those states.  Above 

0.03 auE = these states become available. 
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Figure 46.  Probability to Transition from 
1
2
1
2

0
,0

0
 to 

1
2
1
2

0
,1

0
and 

3
2
1
2

0
,1

0
 

 
 

 

Figure 47.  Probability to Transition from 
1
2
1
2

0
,0

0
 to the Six Allowed

2
,1aj

j ω
 States 
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Figure 48.  Probability to Transition from 
1
2
1
2

0
,0

0
 to the Six Allowed

4
,1aj

j ω
 States 

 

 

 

Figure 49.  Probability to Transition from 
1
2
1
2

0
,0

0
 to the Six Allowed

6
,1aj

j ω
 States 

 

As expected based on their internal energies, there are no transitions to the 8, 1j v= =  or 

10, 1j v= = in this energy range.  The energies associated with transitions to the higher 
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vibrational eigenstates are at the upper limit of the energies present in the initial 

wavepacket, so usable data is obtained over a smaller range of energies. 

Feshbach Resonances 
 

 Portions of the wavepacket that are coupled to higher surfaces have energies near 

the eigenvalues of the shallow wells on those surfaces.  Figure 50 shows the wells for the 

lowest three adiabatic potential energy surfaces at 1.402 aur = . 

 

 

Figure 50.  Cross-section of First Three Adiabatic Surfaces at 1.402 aur = Showing Shallow Wells 

 
 

 These shallow well potentials cause portions of the wavepacket to be trapped in a 

quasi-stable state and remain there until they are coupled back down to the lower energy 

surfaces at which point they will exit the interaction region.  This phenomenon results in 
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high amplitude peaks appearing in the scattering matrix elements for those lower surfaces 

at energies near the eigenstates of the wells of the higher surfaces. 

 

 

Figure 51.  Detail of Feshbach Resonances in Reflection Scattering Matrix Element  
 

These resonances span the energies of the 
31

2 22 2
,

k kω ω
 states and 

31
2 24 4

,
k kω ω

, 

and are offset from the internal energies of those states by a small amount associated with 

the energy of the shallow potential wells. 

  Although smaller in magnitude, the 
1
2
1
2

0
, 0

0
v = →  

31
2 2
1 1
2 2

0 0
, 1 , , 1

0 0
v v= =  transitions also display Feshbach resonances at the energies 

associated with the 
2

, 1aj v
k ω

=  and 
4

, 1aj v
k ω

=  states (0.0304 au, 0.0339 au). 
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Figure 52.  Feshbach Resonance Detail for Transition from 
1
2
1
2

0
,0

0
 to 

1
2
1
2

0
,1

0
and 

3
2
1
2

0
,1

0
 

 

 

 Feshbach resonances are also observed in calculations utilizing a one-dimensional 

propagator.  By including the r dimension, the resonances now occur at energies that are 

the eigenvalues of a two-dimensional well.  In the region of the shallow potential wells in 

the R-dimension the r cross-section is approximately that of the asymptotic 2H  potential. 
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Figure 53.  Cross-section of First Three Adiabatic Surfaces at 7 auR =  
 

 

The steepness of the r cross-section (this may be quantified, for example, by 

representing it as a simple harmonic oscillator and examining the spring constant) is a 

factor of 410:  higher than in the R-direction.  Because of this the two-dimensional well 

does not offer more quasi-stable states – they are simply offset from zero by 

approximately the energy of the vibrational ground state.  Because of this relative 

steepness, and due to the fact that in the region of the shallow wells in the R-direction, the 

shape of the Feshbach resonances is not significantly different in the two-dimensional 

case compared to the one-dimensional case obtained by constraining the molecular 

bondlength to 1.402 aur = . 

 Because they have distinctive features and are associated with portions of the 

wavepacket that become trapped and exit the interaction region slowly, the Feshbach 

resonances provide a useful tool for determining convergence based on total propagation 
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time.  Figure 54 shows the Feshbach resonances observed in the scattering matrix 

element for reflection on the ground state as calculated using various total propatation 

times maxT . 

 

 

Figure 54.  Detail of Feshbach Resonances for 6
max 2,3, 4 10  auT = ×  

 

Around the sharp peaks of the Feshbach resonances, the line corresponding to 

6
max 2 10  auT = ×  deviates from the other lines.  Because the correlation function has a 

shorter total time its Fourier transform does not have the resolution necessary to capture 

these features.  The agreement between the calculation using 6
max 3 10  auT = ×  and 

6
max 4 10  auT = × indicates the calculation has converged at that total propagation time. 

 

Comparison to One Dimensional Calculation 
 

 Previous calculations of the 2B H+  scattering matrix elements were done by 

fixing the molecular bondlength to its equilibrium value 1.402 aur = and propagating on 
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the resulting one dimensional potential energy surfaces.  Including the r degree of 

freedom changes the scattering matrix elements in several ways.  Figure 55 shows a 

comparison between the one dimensional and two dimensional results for the transitions 

from 
1
2
1
2

0
,0

0
 to 

1
2
1
2

0
,0

0
and 

3
2
1
2

0
,0

0
.  In these plots the two dimensional results are 

shifted by the energy of the ground vibrational state in order to make the energy scales 

the same. 

 

 

Figure 55.  1-D and 2-D Results for the Transition from 
1
2
1
2

0
,0

0
 to 

1
2
1
2

0
,0

0
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Figure 56.  1-D and 2-D Results for the Transition from 
1
2
1
2

0
,0

0
 to 

3
2
1
2

0
,0

0
  

 
 

 The scattering matrix elements for the one dimensional and two dimensional 

calculations are very similar with the primary difference being a shift towards lower 

energies in the two dimensional case.  This shift grows larger at higher energies. 

 The two dimensional potential energy surfaces contain a ( )
2

2

2

1
2 H

j j
rµ
+h

 term, as seen 

in eq. (31).  Besides providing the rotor energy separation to the surfaces, this term also 

flattens out the r-cross section of the higher surfaces.  As a result of this flattening, the 

ground vibrational energy is slightly lowered on surfaces with higher j.  For example, the 

ground vibrational energy on the 2j =  surfaces is 55 10 au−×: lower than the ground 

vibrational energy on the 0j =  surfaces.  This effectively makes the upper surfaces 

accessible at lower energies, resulting in a shift in the scattering matrix elements.  This 

shift is examined at the first set of Feshbach resonances in the ground state transition. 
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Figure 57.  1-D and 2-D Feshbach Resonances for the Transition from 
1
2
1
2

0
,0

0
 to 

1
2
1
2

0
,0

0
 

 

 The Feshbach resonances from the two dimensional calculation are shifted in 

energy by 55 10 au−×: as predicted.  While their structure is qualitatively the same, the 

two dimensional calculation yields additional low amplitude features.  This is also seen in 

the Feshbach resonances in the fine structure transition. 
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Figure 58.  1-D and 2-D Feshbach Resonances for the Transition from 
1
2
1
2

0
,0

0
 to 

3
2
1
2

0
,0

0
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IV. Conclusion 
 
 
 Coupling between different degrees of freedom presents a challenge when 

modeling the dynamics of atomic and molecular collisions.  The collision of boron and 

molecular hydrogen is an example of a system in which this nonadiabatic behavior plays 

a key role.  This work models the dynamics of 2B H+  as they collide and calculates for a 

range of energies the probability of changes to the molecule’s rotational and vibrational 

state as well as the electronic fine-structure transition of the single open shell electron in 

boron. 

 Garvin [1] obtained the effective potential energy surfaces for 2B H+  by 

combining the system’s rotational energy with the adiabatic electronic potential energy 

surfaces calculated by Yarkony and representing the result in an angular momentum 

basis.  These effective PES are two-dimensional in r, the 2H bondlength, and R, the 

distance from the boron atom to the 2H  center of mass.  As a result of the angular 

momentum basis chosen these surfaces are labeled by the angular momentum quantum 

numbers.  The PES are coupled, allowing a wavepacket initially on a single surfaces to 

transition to multiple surfaces.  Since there are an infinite number of rotational states 

there are an infinite number of coupled PES.  For practical considerations only those 

surfaces which are energetically accessible are considered.  In this work only values of 

total angular momentum 1/ 2J =  are considered, and the projection of J onto the body 

fixed z-axis, labeled P, is assumed to be constant under the centrifugal sudden 

approximation. 
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 Wavepackets are propagated on these surfaces using a split-operator propagator 

which approximates the time-evolution operator for small time steps.  Initially a 

wavepacket is located on a single PES.  This wavepacket is chosen to be an eigenstate of 

the asymptotic Hamiltonian and is referred to as the reactant Møller state.  As it is 

propagated forward in time it enters the interaction region and is coupled to the other 

surfaces so that it then exits the interaction region on all of the surfaces.  At every point 

in time the correlation function is calculated between the evolving state and a product 

state located in the asymptotic limit of each PES.  The Fourier transform of these 

correlation functions can be used to calculate scattering matrix elements using the 

channel packet method.  The absolute value squared of the scattering matrix elements is 

the probability that as a result of the collision the system will transition from the state 

described by the reactant wavepacket to a state described by the product wavepacket. 

  

Table 3.  Summary of Steps for Calculating Scattering Matrix Elements 
 

1. Obtain electronic adiabatic PES for 2B H+  (Yarkony) 

2. Obtain effective diabatic PES for 2B H+  (Garvin) 

3. Numerically determine eigenstates and eigenvalues for each PES in asymptotic limit  

4. Define reactant Møller state on ground state and product Møller states (representing both the 

0,1v =  vibrational levels) on each PES 

5. Propagate reactant Møller state forward in time  

6. Calculate the correlation function between the reactant Møller state and each of the product 

Møller states (over all time for which it is nonzero) 

7. Calculate the scattering matrix elements using the channel packet method (eq. (89)) 
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 The scattering matrix elements exhibit broad oscillatory behavior with rapidly 

oscillating Feshbach resonances associated with energies of the quasi-stable states of the 

upper surfaces.  Compared to a calculation requiring 1.402 aur = the scattering matrix 

elements are shifted towards lower energies consistent with the lowering of the 

vibrational energies as the rotational energy increases.  Including the r degree of freedom 

also has the important result of allowing the reaction to BH H+ , which is observed for 

energies beginning with 0.022 au.  Finally, considering the r degree of freedom allows 

for calculation of scattering matrix elements for transitions involving changes to the 

vibrational eigenstate. 

 

Summary of Key Contributions 
 
 
 This work extends the channel packet method to include treatment of 

nonadiabatic systems in which the reaction dynamics are described by potential energy 

surfaces that are two dimensional.  This results in a calculation based on fewer 

unphysical constraints and allows for the consideration of changes of eigenstates 

associated with new degrees of freedom, as well as capturing important reaction 

dynamics which may not otherwise be predicted. 

 This work implements this methodology for the collision of 2B H+ , resulting in 

transition probabilities for changes to the boron electronic fine structure and the rotational 

and vibrational eigenstates of the 2H  molecule as a result of the collision.  It also allows 

a prediction that reaction 2B H BH H+ → +  will begin to occur at a total energy of 

0.022 au . 
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Recommendations for Future Work 
 
 

By extending the effective potential energy surfaces to include values of total 

angular momentum J greater than 1/2 total scattering cross-sections may be calculated 

and used to predict reaction rates. 

The potential energy surfaces could also be extended to include states for which 

there is a change in the projection of the total angular momentum onto the body fixed z-

axis (P).  This would allow the computation to be done without invoking the centrifugal 

sudden approximation. 

Calculating the BH + H potential energy surfaces would allow propagation on 

these surfaces and allow for calculation of scattering events at higher energies without 

requiring the assumption that any portion of the wavepacket that crosses the barrier to 

reaction seen on the lowest adiabatic PES will react completely.   
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